逻辑回归方法:
class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)
可选参数:
-
penalty:正则化方式,可选择‘l1’, ‘l2’, ‘elasticnet’, ‘none’,默认'l2'
-
dual:是否选择对偶,当n_samples> n_features时,首选dual = False
-
tol:算法停止的误差条件,默认是0.0001
-
C:正则强度的倒数;必须为正浮点数,较小的值指定更强的正则化,默认为1.0
-
fit_intercept:是否应将常量(也称为偏差或截距)添加到决策函数。默认是True。
-
intercept_scaling:不常用
-
class_weight:对类别进行加权,可以使用字典形式加权,输入‘balanced’代表权重为类别频率,默认是"None"。
-
random_state:选择随机种子,打乱样本时候指定。
-
solver:指定优化器类型,可选‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’
具体的优化方法参考:机器学习中的优化算法!
-
max_iter:算法收敛的最大迭代次数,默认100。
-
multi_class:不常用。
-
verbose:对于liblinear和lbfgs,求解器将verbose设置为任何正数以表示详细程度。
-
warm_start:不常用。
-
n_jobs:使用内核数。
-
l1_ratio:弹性网络参数,其中0 <= l1_ratio <=1。仅当penalty=“ elasticnet”时使用。
返回标签:
- classes_:返回的类别标签
- coef_:系数
- intercept_:截距项
- n_iter_:所有类的迭代次数
代码展示
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:12:48 2020 @author: Admin """ # 引入数据 from sklearn import datasets import numpy as np iris = datasets.load_iris() X = iris.data[:,[2,3]] y = iris.target print("Class labels:",np.unique(y)) #打印分类类别的种类 # 切分训练数据和测试数据 from sklearn.model_selection import train_test_split ## 30%测试数据,70%训练数据,stratify=y表示训练数据和测试数据具有相同的类别比例 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=1,stratify=y) from sklearn.preprocessing import StandardScaler sc = StandardScaler() ## 估算训练数据中的mu和sigma sc.fit(X_train) ## 使用训练数据中的mu和sigma对数据进行标准化 X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) ## 画出决策边界图(只有在2个特征才能画出来) import matplotlib.pyplot as plt %matplotlib inline from matplotlib.colors import ListedColormap def plot_decision_region(X,y,classifier,resolution=0.02): markers = ('s','x','o','^','v') colors = ('red','blue','lightgreen','gray','cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min,x1_max = X[:,0].min()-1,X[:,0].max()+1 x2_min,x2_max = X[:,1].min()-1,X[:,1].max()+1 xx1,xx2 = np.meshgrid(np.arange(x1_min,x1_max,resolution), np.arange(x2_min,x2_max,resolution)) Z = classifier.predict(np.array([xx1.ravel(),xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1,xx2,Z,alpha=0.3,cmap=cmap) plt.xlim(xx1.min(),xx1.max()) plt.ylim(xx2.min(),xx2.max()) # plot class samples for idx,cl in enumerate(np.unique(y)): plt.scatter(x=X[y==cl,0], y = X[y==cl,1], alpha=0.8, c=colors[idx], marker = markers[idx], label=cl, edgecolors='black') #逻辑回归 由于标签有三类,特征有2个,因此截距和系数也有三对 from sklearn.linear_model import LogisticRegression lr = LogisticRegression(C=100.0,random_state=1) lr.fit(X_train_std,y_train) print("Class:",lr.classes_) print("Coef:",lr.coef_) print("intercept",lr.intercept_) print("n_iter",lr.n_iter_) ''' Class: [0 1 2] Coef: [[-5.61268224 -4.30718677] [ 2.40969576 -2.07325711] [ 9.51524418 5.39484899]] intercept [-5.8391281 -0.75730853 -9.21167569] n_iter [9] ''' plot_decision_region(X_train_std,y_train,classifier=lr,resolution=0.02) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc='upper left') plt.show() # 预测 ## 预测前三样本在各个类别的概率 print("前三样本在各个类别的预测概率为: ",lr.predict_proba(X_test_std[:3,:])) print(" ============================") ## 获得前三个样本的分类标签 print(" 前三样本在各个类别的预测类别为: ",lr.predict(X_test_std[:3,:])) print(" ============================") ''' 前三样本在各个类别的预测概率为: [[3.17983737e-08 1.44886616e-01 8.55113353e-01] [8.33962295e-01 1.66037705e-01 4.55557009e-12] [8.48762934e-01 1.51237066e-01 4.63166788e-13]] ============================ 前三样本在各个类别的预测类别为: [2 0 0] ============================ '''