zoukankan      html  css  js  c++  java
  • 机器学习4个常用超参数调试方法

    ML工作流中最困难的部分之一是为模型找到最好的超参数。ML模型的性能与超参数直接相关。超参数调优的越好,得到的模型就越好。调优超参数可能是非常乏味和困难的,更像是一门艺术而不是科学。

    超参数

    超参数是在建立模型时用于控制算法行为的参数。这些参数不能从常规训练过程中获得。在对模型进行训练之前,需要对它们进行赋值。

    1. 传统手工搜索

    在传统的调参过程中,我们通过训练算法手动检查随机超参数集,并选择符合我们目标的最佳参数集。

    我们看看代码:

    #importing required libraries
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import KFold , cross_val_score
    from sklearn.datasets import load_wine
    
    wine = load_wine()
    X = wine.data
    y = wine.target
    
    #splitting the data into train and test set
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3,random_state = 14)
    
    #declaring parameters grid
    k_value = list(range(2,11))
    algorithm = ['auto','ball_tree','kd_tree','brute']
    scores = []
    best_comb = []
    kfold = KFold(n_splits=5)
    
    #hyperparameter tunning
    for algo in algorithm:
      for k in k_value:
        knn = KNeighborsClassifier(n_neighbors=k,algorithm=algo)
        results = cross_val_score(knn,X_train,y_train,cv = kfold)
    
        print(f'Score:{round(results.mean(),4)} with algo = {algo} , K = {k}')
        scores.append(results.mean())
        best_comb.append((k,algo))
    
    best_param = best_comb[scores.index(max(scores))]
    print(f'
    The Best Score : {max(scores)}')
    print(f"['algorithm': {best_param[1]} ,'n_neighbors': {best_param[0]}]")
    Score:0.6697 with algo = auto , K = 2
    Score:0.6773 with algo = auto , K = 3
    Score:0.7177 with algo = auto , K = 4
    Score:0.734 with algo = auto , K = 5
    Score:0.7017 with algo = auto , K = 6
    Score:0.7417 with algo = auto , K = 7
    Score:0.7017 with algo = auto , K = 8
    Score:0.6533 with algo = auto , K = 9
    Score:0.6613 with algo = auto , K = 10
    Score:0.6697 with algo = ball_tree , K = 2
    Score:0.6773 with algo = ball_tree , K = 3
    Score:0.7177 with algo = ball_tree , K = 4
    Score:0.734 with algo = ball_tree , K = 5
    Score:0.7017 with algo = ball_tree , K = 6
    Score:0.7417 with algo = ball_tree , K = 7
    Score:0.7017 with algo = ball_tree , K = 8
    Score:0.6533 with algo = ball_tree , K = 9
    Score:0.6613 with algo = ball_tree , K = 10
    Score:0.6697 with algo = kd_tree , K = 2
    Score:0.6773 with algo = kd_tree , K = 3
    Score:0.7177 with algo = kd_tree , K = 4
    Score:0.734 with algo = kd_tree , K = 5
    Score:0.7017 with algo = kd_tree , K = 6
    Score:0.7417 with algo = kd_tree , K = 7
    Score:0.7017 with algo = kd_tree , K = 8
    Score:0.6533 with algo = kd_tree , K = 9
    Score:0.6613 with algo = kd_tree , K = 10
    Score:0.6697 with algo = brute , K = 2
    Score:0.6773 with algo = brute , K = 3
    Score:0.7177 with algo = brute , K = 4
    Score:0.734 with algo = brute , K = 5
    Score:0.7017 with algo = brute , K = 6
    Score:0.7417 with algo = brute , K = 7
    Score:0.7017 with algo = brute , K = 8
    Score:0.6533 with algo = brute , K = 9
    Score:0.6613 with algo = brute , K = 10
    
    The Best Score : 0.7416666666666667
    ['algorithm': auto ,'n_neighbors': 7]

    缺点

    1. 没办法确保得到最佳的参数组合。
    2. 这是一个不断试错的过程,所以,非常的耗时。

    2. 网格搜索

    网格搜索是一种基本的超参数调优技术。它类似于手动调优,为网格中指定的所有给定超参数值的每个排列构建模型,评估并选择最佳模型。考虑上面的例子,其中两个超参数k_value =[2,3,4,5,6,7,8,9,10] & algorithm =[' auto ', ' ball_tree ', ' kd_tree ', ' brute '],在这个例子中,它总共构建了9*4 = 36不同的模型。

    from sklearn.model_selection import GridSearchCV
    
    knn = KNeighborsClassifier()
    grid_param = { 'n_neighbors' : list(range(2,11)) , 
                  'algorithm' : ['auto','ball_tree','kd_tree','brute'] }
                  
    grid = GridSearchCV(knn,grid_param,cv = 5)
    grid.fit(X_train,y_train)
    
    #best parameter combination
    grid.best_params_  #{'algorithm': 'auto', 'n_neighbors': 5}
    
    #Score achieved with best parameter combination
    grid.best_score_  #0.774
    
    #all combinations of hyperparameters
    grid.cv_results_['params']
    
    #average scores of cross-validation
    grid.cv_results_['mean_test_score']

    至于为什么二者的结果会不一样,那是因为seed种子数也是一个超参数

    缺点

    由于它尝试了超参数的每一个组合,并根据交叉验证得分选择了最佳组合,这使得GridsearchCV非常慢。

    3. 随机搜索

    使用随机搜索代替网格搜索的动机是,在许多情况下,所有的超参数可能不是同等重要的。随机搜索从超参数空间中随机选择参数组合,参数由n_iter给定的固定迭代次数的情况下选择。实验证明,随机搜索的结果优于网格搜索。

    from sklearn.model_selection import RandomizedSearchCV
    
    knn = KNeighborsClassifier()
    
    grid_param = { 'n_neighbors' : list(range(2,11)) , 
                  'algorithm' : ['auto','ball_tree','kd_tree','brute'] }
    
    rand_ser = RandomizedSearchCV(knn,grid_param,n_iter=10)
    rand_ser.fit(X_train,y_train)
    
    #best parameter combination
    rand_ser.best_params_  #{'n_neighbors': 7, 'algorithm': 'brute'}
    
    #score achieved with best parameter combination
    rand_ser.best_score_  #0.7256666666666667
    
    #all combinations of hyperparameters
    rand_ser.cv_results_['params']
    
    #average scores of cross-validation
    rand_ser.cv_results_['mean_test_score']

    缺点

    随机搜索的问题是它不能保证给出最好的参数组合。

    4. 贝叶斯搜索

    贝叶斯优化属于一类优化算法,称为基于序列模型的优化(SMBO)算法。这些算法使用先前对损失f的观察结果,以确定下一个(最优)点来抽样f。该算法大致可以概括如下。

    1. 使用先前评估的点X1*:n*,计算损失f的后验期望。
    2. 在新的点X的抽样损失f,从而最大化f的期望的某些方法。该方法指定f域的哪些区域最适于抽样。

    重复这些步骤,直到满足某些收敛准则。

    from skopt import BayesSearchCV
    
    import warnings
    warnings.filterwarnings("ignore")
    
    # parameter ranges are specified by one of below
    from skopt.space import Real, Categorical, Integer
    
    knn = KNeighborsClassifier()
    #defining hyper-parameter grid
    grid_param = { 'n_neighbors' : list(range(2,11)) , 
                  'algorithm' : ['auto','ball_tree','kd_tree','brute'] }
    
    #initializing Bayesian Search
    Bayes = BayesSearchCV(knn , grid_param , n_iter=30 , random_state=14)
    Bayes.fit(X_train,y_train)
    
    #best parameter combination
    Bayes.best_params_  #OrderedDict([('algorithm', 'ball_tree'), ('n_neighbors', 5)])
    
    #score achieved with best parameter combination
    Bayes.best_score_  #0.7741935483870968
    
    #all combinations of hyperparameters
    Bayes.cv_results_['params']
    
    #average scores of cross-validation
    Bayes.cv_results_['mean_test_score']

    缺点

    要在2维或3维的搜索空间中得到一个好的代理曲面需要十几个样本,增加搜索空间的维数需要更多的样本。

  • 相关阅读:
    Activity相关
    关于JNI接口封装(将so接口调用封装到jar包)
    在android系统源码目录下编译apk
    【原创】分享一个分析函数统计案例
    【原创】Oracle函数中对于NO_DATA_FOUND异常处理的研究
    【原创】一种维护型项目升级打包的解决方案
    【原创】如何找到Oracle中哪条记录被锁
    【原创】ORA-04068: 已丢弃程序包 的当前状态研究
    【原创】CQ数据库损坏修复
    【原创】物化视图日志对性能的影响测试
  • 原文地址:https://www.cnblogs.com/cgmcoding/p/13720232.html
Copyright © 2011-2022 走看看