zoukankan      html  css  js  c++  java
  • 基于Dijkstra算法的武汉地铁路径规划(转)

    文章转自:http://wh.bendibao.com/ditie/linemap.shtml

    # -*- coding: utf-8 -*-
    """
    Created on Thu Apr  1 17:54:34 2021
    
    @author: Administrator
    """
    
    
    
    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    # @Date    : 2020-12-03 17:09:32
    # @Author  : Muxiaoxiong
    # @email   : xiongweinie@foxmail.com
     
    '''
    武汉地铁线路规划
    '''
     
    #爬取武汉地铁数据
     
    import requests
    from bs4 import BeautifulSoup
    import pandas as pd
    import json
    import os
    from tqdm import tqdm
    from collections import defaultdict
    import pickle
    import itertools
    from geopy.distance import geodesic
     
    def spyder():
        #获得武汉的地铁信息
        print('正在爬取武汉地铁信息...')
        url='http://wh.bendibao.com/ditie/linemap.shtml'
        user_agent='Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11'
        headers = {'User-Agent': user_agent}
        r = requests.get(url, headers=headers)
        r.encoding = r.apparent_encoding
        soup = BeautifulSoup(r.text, 'lxml')
        all_info = soup.find_all('div', class_='line-list')
        df=pd.DataFrame(columns=['name','site'])
        for info in tqdm(all_info):
            title=info.find_all('div',class_='wrap')[0].get_text().split()[0].replace('线路图','')
            station_all=info.find_all('a',class_='link')
            for station in station_all:
                station_name=station.get_text()
                longitude,latitude=get_location(station_name,'武汉')
                temp={'name':station_name,'site':title,'longitude':longitude,'latitude':latitude}
                df =df.append(temp,ignore_index=True)
        df.to_excel('./subway.xlsx',index=False)
     
    def get_location(keyword,city):
        #获得经纬度
        user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'
        headers = {'User-Agent': user_agent}
        url='http://restapi.amap.com/v3/place/text?key='+'545c29d3cb75cf0a5b99831cdb1ae99a'+'&keywords='+keyword+'&types=&city='+city+'&children=1&offset=1&page=1&extensions=all'
        data = requests.get(url, headers=headers)
        data.encoding='utf-8'
        data=json.loads(data.text)
        result=data['pois'][0]['location'].split(',')
        return result[0],result[1]
     
    def compute_distance(longitude1,latitude1,longitude2,latitude2):
        #计算2点之间的距离
        user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'
        headers = {'User-Agent': user_agent}
        url='http://restapi.amap.com/v3/distance?key='+'545c29d3cb75cf0a5b99831cdb1ae99a'+'&origins='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&type=1'
        data=requests.get(url,headers=headers)
        data.encoding='utf-8'
        data=json.loads(data.text)
        result=data['results'][0]['distance']
        return result
     
    def get_graph():
        print('正在创建pickle文件...')
        data=pd.read_excel('./subway.xlsx')
        #创建点之间的距离
        graph=defaultdict(dict)
        for i in range(data.shape[0]):
            site1=data.iloc[i]['site']
            if i<data.shape[0]-1:
                site2=data.iloc[i+1]['site']
                #如果是共一条线
                if site1==site2:
                    longitude1,latitude1=data.iloc[i]['longitude'],data.iloc[i]['latitude']
                    longitude2,latitude2=data.iloc[i+1]['longitude'],data.iloc[i+1]['latitude']
                    name1=data.iloc[i]['name']
                    name2=data.iloc[i+1]['name']
                    distance=compute_distance(longitude1,latitude1,longitude2,latitude2)
                    graph[name1][name2]=distance
                    graph[name2][name1]=distance
        output=open('graph.pkl','wb')
        pickle.dump(graph,output)
     
    #找到开销最小的节点
    def find_lowest_cost_node(costs,processed):
        #初始化数据
        lowest_cost=float('inf') #初始化最小值为无穷大
        lowest_cost_node=None
        #遍历所有节点
        for node in costs:
            #如果该节点没有被处理
            if not node in processed:
                #如果当前的节点的开销比已经存在的开销小,那么久更新该节点为最小开销的节点
                if costs[node]<lowest_cost:
                    lowest_cost=costs[node]
                    lowest_cost_node=node
        return lowest_cost_node
     
    #找到最短路径
    def find_shortest_path(start,end,parents):
        node=end
        shortest_path=[end]
        #最终的根节点为start
        while parents[node] !=start:
            shortest_path.append(parents[node])
            node=parents[node]
        shortest_path.append(start)
        return shortest_path
    #计算图中从start到end的最短路径
    def dijkstra(start,end,graph,costs,processed,parents):
        #查询到目前开销最小的节点
        node=find_lowest_cost_node(costs,processed)
        #使用找到的开销最小节点,计算它的邻居是否可以通过它进行更新
        #如果所有的节点都在processed里面 就结束
        while node is not None:
            #获取节点的cost
            cost=costs[node]  #cost 是从node 到start的距离
            #获取节点的邻居
            neighbors=graph[node]
            #遍历所有的邻居,看是否可以通过它进行更新
            for neighbor in neighbors.keys():
                #计算邻居到当前节点+当前节点的开销
                new_cost=cost+float(neighbors[neighbor])
                if neighbor not in costs or new_cost<costs[neighbor]:
                    costs[neighbor]=new_cost
                    #经过node到邻居的节点,cost最少
                    parents[neighbor]=node
            #将当前节点标记为已处理
            processed.append(node)
            #下一步继续找U中最短距离的节点  costs=U,processed=S
            node=find_lowest_cost_node(costs,processed)
     
        #循环完成 说明所有节点已经处理完
        shortest_path=find_shortest_path(start,end,parents)
        shortest_path.reverse()
        return shortest_path
     
     
    def subway_line(start,end):
        file=open('graph.pkl','rb')
        graph=pickle.load(file)
        #创建点之间的距离
        #现在我们有了各个地铁站之间的距离存储在graph
        #创建节点的开销表,cost是指从start到该节点的距离
        costs={}
        parents={}
        parents[end]=None
        for node in graph[start].keys():
            costs[node]=float(graph[start][node])
            parents[node]=start
        #终点到起始点距离为无穷大
        costs[end]=float('inf')
        #记录处理过的节点list
        processed=[]
        shortest_path=dijkstra(start,end,graph,costs,processed,parents)
        return shortest_path
     
    def get_nearest_subway(data,longitude1,latitude1):
        #找最近的地铁站
        longitude1=float(longitude1)
        latitude1=float(latitude1)
        distance=float('inf')
        nearest_subway=None
        for i in range(data.shape[0]):
            site1=data.iloc[i]['name']
            longitude=float(data.iloc[i]['longitude'])
            latitude=float(data.iloc[i]['latitude'])
            temp=geodesic((latitude1,longitude1), (latitude,longitude)).m
            if temp<distance:
                distance=temp
                nearest_subway=site1
        return nearest_subway
     
    def main(site1,site2):
        if not os.path.exists('./subway.xlsx'):
            spyder()
        if not os.path.exists('./graph.pkl'):
            get_graph()
        longitude1,latitude1=get_location(site1,'武汉')
        longitude2,latitude2=get_location(site2,'武汉')
        data=pd.read_excel('./subway.xlsx')
        #求最近的地铁站
        start=get_nearest_subway(data,longitude1,latitude1)
        end=get_nearest_subway(data,longitude2,latitude2)
        shortest_path=subway_line(start,end)
        if site1 !=start:
            shortest_path.insert(0,site1)
        if site2 !=end:
            shortest_path.append(site2)
        print('路线规划为:','-->'.join(shortest_path))
     
    if __name__ == '__main__':
        global keynum
        keynum='' #输入自己的key
        main('华中农业大学','东亭')
  • 相关阅读:
    C#编程(七十九)---------- 反射
    C#编程(七十一)---------- 自定义特性
    C#编程(七十六)----------使用指针实现基于栈的高性能数组
    C#编程(七十五)----------C#使用指针
    微信开发之移动手机WEB页面(HTML5)Javascript实现一键拨号及短信发送功能
    [asp.net]c# winform打印类
    Exception in thread "main" brut.androlib.AndrolibException: Could not decode arsc file
    ValueError: invalid literal for int() with base 10: 'abc'
    检查网址是否正常访问
    Python测试网络连通性示例【基于ping】
  • 原文地址:https://www.cnblogs.com/cgmcoding/p/14607680.html
Copyright © 2011-2022 走看看