zoukankan      html  css  js  c++  java
  • 2.7.py xgboost版评分映射

    主要修改点有2处:

    1.xgboost的参数,有些参数现版本的xgboost是没有的,需要注释掉或者使用现在的替换

    2.xgboost版评分映射的问题,由于预测的是逾期的概率,因此我们需要使用基础分-后面的,而不是+

    #%%
    import pandas as pd  
    from sklearn.metrics import roc_auc_score,roc_curve,auc  
    from sklearn import metrics  
    from sklearn.linear_model import LogisticRegression  
    import numpy as np  
    data = pd.read_csv('xxx/Acard.txt')  
    data.head()  
    data.obs_mth.unique()
    '''
    array(['2018-10-31', '2018-07-31', '2018-09-30', '2018-06-30',
           '2018-11-30'], dtype=object)
    
    '''
    #每个月的数据量
    data.obs_mth.value_counts()
    '''
    Out[233]: 
    2018-07-31    34030
    2018-06-30    20565
    2018-11-30    15975
    2018-10-31    14527
    2018-09-30    10709
    Name: obs_mth, dtype: int64
    '''
    
    train = data[data.obs_mth != '2018-11-30'].reset_index().copy()   #训练集
    val = data[data.obs_mth == '2018-11-30'].reset_index().copy()  #测试集
      
    feature_lst = ['person_info','finance_info','credit_info','act_info']  
    x = train[feature_lst]  
    y = train['bad_ind']  
      
    val_x =  val[feature_lst]  
    val_y = val['bad_ind']  #0.0205320813771518
    
    
    #%%
    lr_model = LogisticRegression(C=0.1,class_weight='balanced')  
    lr_model.fit(x,y) 
     
    #训练集
    y_pred = lr_model.predict_proba(x)[:,1]  
    fpr_lr_train,tpr_lr_train,_ = roc_curve(y,y_pred)  
    train_ks = abs(fpr_lr_train - tpr_lr_train).max()  
    print('train_ks : ',train_ks)  #0.4482325608488951
    
    #测试集  
    y_pred = lr_model.predict_proba(val_x)[:,1]  
    fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred)  
    val_ks = abs(fpr_lr - tpr_lr).max()  
    print('val_ks : ',val_ks)  #0.4198642457760936
    
    from matplotlib import pyplot as plt  
    plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')  
    plt.plot(fpr_lr,tpr_lr,label = 'evl LR')  
    plt.plot([0,1],[0,1],'k--')  
    plt.xlabel('False positive rate')  
    plt.ylabel('True positive rate')  
    plt.title('ROC Curve')  
    plt.legend(loc = 'best')  
    plt.show() 
    
    #%% ks
    import math
    model = lr_model  
    row_num, col_num = 0, 0  
    bins = 20  
    Y_predict = [s[1] for s in model.predict_proba(val_x)]  
    Y = val_y  
    nrows = Y.shape[0]  
    lis = [(Y_predict[i], Y[i]) for i in range(nrows)]  
    ks_lis = sorted(lis, key=lambda x: x[0], reverse=True)  
    bin_num = int(nrows/bins+1)  
    bad = sum([1 for (p, y) in ks_lis if y > 0.5])  
    good = sum([1 for (p, y) in ks_lis if y <= 0.5])  
    bad_cnt, good_cnt = 0, 0  
    KS = []  
    BAD = []  
    GOOD = []  
    BAD_CNT = []  
    GOOD_CNT = []  
    BAD_PCTG = []  
    BADRATE = []  
    dct_report = {}  
    for j in range(bins):  
        ds = ks_lis[j*bin_num: min((j+1)*bin_num, nrows)]  
        bad1 = sum([1 for (p, y) in ds if y > 0.5])  
        good1 = sum([1 for (p, y) in ds if y <= 0.5])  
        bad_cnt += bad1  
        good_cnt += good1  
        bad_pctg = round(bad_cnt/sum(val_y),3)  
        badrate = round(bad1/(bad1+good1),3)  
        ks = round(math.fabs((bad_cnt / bad) - (good_cnt / good)),3)  
        KS.append(ks)  
        BAD.append(bad1)  
        GOOD.append(good1)  
        BAD_CNT.append(bad_cnt)  
        GOOD_CNT.append(good_cnt)  
        BAD_PCTG.append(bad_pctg)  
        BADRATE.append(badrate)  
        dct_report['KS'] = KS  
        dct_report['负样本个数'] = BAD  
        dct_report['正样本个数'] = GOOD  
        dct_report['负样本累计个数'] = BAD_CNT  
        dct_report['正样本累计个数'] = GOOD_CNT  
        dct_report['捕获率'] = BAD_PCTG  
        dct_report['负样本占比'] = BADRATE  
    val_repot = pd.DataFrame(dct_report)  
    print(val_repot)  
    
    #%% 利用pyecharts来画图 
    
    #其实就每个分区逾期率和ks的曲线图
    from pyecharts.charts import *  
    from pyecharts import options as opts  
    from pylab import *  
    mpl.rcParams['font.sans-serif'] = ['SimHei']  
    np.set_printoptions(suppress=True)  
    pd.set_option('display.unicode.ambiguous_as_wide', True)  
    pd.set_option('display.unicode.east_asian_width', True)  
    line = (  
      
        Line()  
        .add_xaxis(list(val_repot.index))  
        .add_yaxis(  
            "分组坏人占比",  
            list(val_repot.负样本占比),  
            yaxis_index=0,  
            color="red",  
        )  
        .set_global_opts(  
            title_opts=opts.TitleOpts(title="行为评分卡模型表现"),  
        )  
        .extend_axis(  
            yaxis=opts.AxisOpts(  
                name="累计坏人占比",  
                type_="value",  
                min_=0,  
                max_=0.5,  
                position="right",  
                axisline_opts=opts.AxisLineOpts(  
                    linestyle_opts=opts.LineStyleOpts(color="red")  
                ),  
                axislabel_opts=opts.LabelOpts(formatter="{value}"),  
            )  
      
        )  
        .add_xaxis(list(val_repot.index))  
        .add_yaxis(  
            "KS",  
            list(val_repot['KS']),  
            yaxis_index=1,  
            color="blue",  
            label_opts=opts.LabelOpts(is_show=False),  
        )  
    )  
    line.render_notebook()  
    
    
    #还有最好在jupyter 上面跑,Spyder不展示该图
    
    #%%
    print('变量名单:',feature_lst)  
    print('系数:',lr_model.coef_)  
    print('截距:',lr_model.intercept_)  
    '''
    变量名单: ['person_info', 'finance_info', 'credit_info', 'act_info']
    系数: [[ 3.4946237  11.40440098  2.45601882 -1.6844742 ]]
    截距: [-0.34578469]
    '''
    
    import math
    #算分数onekey   
    def score(person_info,finance_info,credit_info,act_info):  
        xbeta = person_info * ( 3.49460978) 
                      + finance_info * ( 11.40051582 ) 
                      + credit_info * (2.45541981) 
                      + act_info * ( -1.68676079) 
                      -0.34484897   
        score = 650-34* (xbeta)/math.log(2)  
        return score  
    val['score'] = val.apply(lambda x : 
                                score(x.person_info,x.finance_info,x.
                                credit_info,x.act_info) ,axis=1)  
    fpr_lr,tpr_lr,_ = roc_curve(val_y,val['score'])  
    val_ks = abs(fpr_lr - tpr_lr).max()  
    print('val_ks : ',val_ks)  
    
    #%%
    
    #对应评级区间  
    def level(score):  
        level = 0  
        if score <= 600:  
            level = "D"  
        elif score <= 640 and score > 600 :   
            level = "C"  
        elif score <= 680 and score > 640:  
            level = "B"  
        elif  score > 680 :  
            level = "A"  
        return level  
    val['level'] = val.score.map(lambda x : level(x) )  
    print(val.level.groupby(val.level).count()/len(val))  
    
    
    
    #%% xgb
    
    import xgboost as xgb  
    data = pd.read_csv('xxx/Acard.txt')  
    df_train = data[data.obs_mth != '2018-11-30'].reset_index().copy()  
    val = data[data.obs_mth == '2018-11-30'].reset_index().copy()  
    lst = ['person_info','finance_info','credit_info','act_info']  
      
    train = data[data.obs_mth != '2018-11-30'].reset_index().copy()  
    evl = data[data.obs_mth == '2018-11-30'].reset_index().copy()  
      
    x = train[lst]  
    y = train['bad_ind']  
      
    evl_x =  evl[lst]  
    evl_y = evl['bad_ind']  
    
    
    
    #%% 
    #定义XGB函数  
    def XGB_test(train_x,train_y,test_x,test_y):  
        from multiprocessing import cpu_count  
        clf = xgb.XGBClassifier(
            boosting_type='gbdt', num_leaves=31, 
                    reg_Ap=0.0, reg_lambda=1,  
            max_depth=2, n_estimators=800,
                    max_features = 140, objective='binary:logistic',  
            subsample=0.7, colsample_bytree=0.7, subsample_freq=1,  
            learning_rate=0.05, min_child_weight=50,
                    random_state=None,n_jobs=cpu_count()-1,  
            num_iterations = 800 #迭代次数  
        )  
        clf.fit(train_x, train_y,eval_set=[(train_x, train_y),(test_x,test_y)],
                    eval_metric='auc',early_stopping_rounds=100)  
        #print(clf.n_features_) 现在乜有这个参数了  
        return clf #,clf.best_score_[ 'valid_1']['auc']   
    
    #模型训练
    model = XGB_test(x,y,evl_x,evl_y) 
    
    #训练集预测
    y_pred = model.predict_proba(x)[:,1]  
    fpr_xgb_train,tpr_xgb_train,_ = roc_curve(y,y_pred)  
    train_ks = abs(fpr_xgb_train - tpr_xgb_train).max()  
    print('train_ks : ',train_ks)  #train_ks :  0.45953542070724995 
    
    #跨时间验证集预测
    y_pred = model.predict_proba(evl_x)[:,1]  
    fpr_xgb,tpr_xgb,_ = roc_curve(evl_y,y_pred)  
    evl_ks = abs(fpr_xgb - tpr_xgb).max()  
    print('evl_ks : ',evl_ks)  #evl_ks :  0.4368715190475225
    
    #画出ROC曲线并计算KS值
    from matplotlib import pyplot as plt  
    plt.plot(fpr_xgb_train,tpr_xgb_train,label = 'train LR')  
    plt.plot(fpr_xgb,tpr_xgb,label = 'evl LR')  
    plt.plot([0,1],[0,1],'k--')  
    plt.xlabel('False positive rate')  
    plt.ylabel('True positive rate')  
    plt.title('ROC Curve')  
    plt.legend(loc = 'best')  
    plt.show()  
    
    
    #计算分数,评分映射,原来梅老师这里是600-50*(math.log2((1- pred)/ pred)),但是由于预测的是坏用户,因此设置为减
    def score(pred):   
        score = 600-50*(math.log2((1- pred)/ pred))  
        return score  
    evl['xbeta'] = model.predict_proba(evl_x)[:,1]     
    evl['score'] = evl.apply(lambda x : score(x.xbeta) ,axis=1)  
    fpr_lr,tpr_lr,_ = roc_curve(evl_y,evl['score'])  
    evl_ks = abs(fpr_lr - tpr_lr).max()  
    print('val_ks : ',evl_ks)  #val_ks :  0.4368715190475225
    
    
    
    
    #%%生成模型报告
    row_num, col_num = 0, 0  
    bins = 20  
    Y_predict = evl['score']  
    Y = evl_y  
    nrows = Y.shape[0]  
    lis = [(Y_predict[i], Y[i]) for i in range(nrows)]  
    ks_lis = sorted(lis, key=lambda x: x[0], reverse=True)  
    bin_num = int(nrows/bins+1)  
    bad = sum([1 for (p, y) in ks_lis if y > 0.5])  
    good = sum([1 for (p, y) in ks_lis if y <= 0.5])  
    bad_cnt, good_cnt = 0, 0  
    KS = []  
    BAD = []  
    GOOD = []  
    BAD_CNT = []  
    GOOD_CNT = []  
    BAD_PCTG = []  
    BADRATE = []  
    dct_report = {}  
    for j in range(bins):  
        ds = ks_lis[j*bin_num: min((j+1)*bin_num, nrows)]  
        bad1 = sum([1 for (p, y) in ds if y > 0.5])  
        good1 = sum([1 for (p, y) in ds if y <= 0.5])  
        bad_cnt += bad1  
        good_cnt += good1  
        bad_pctg = round(bad_cnt/sum(evl_y),3)  
        badrate = round(bad1/(bad1+good1),3)  
        ks = round(math.fabs((bad_cnt / bad) - (good_cnt / good)),3)  
        KS.append(ks)  
        BAD.append(bad1)  
        GOOD.append(good1)  
        BAD_CNT.append(bad_cnt)  
        GOOD_CNT.append(good_cnt)  
        BAD_PCTG.append(bad_pctg)  
        BADRATE.append(badrate)  
        dct_report['KS'] = KS  
        dct_report['BAD'] = BAD  
        dct_report['GOOD'] = GOOD  
        dct_report['BAD_CNT'] = BAD_CNT  
        dct_report['GOOD_CNT'] = GOOD_CNT  
        dct_report['BAD_PCTG'] = BAD_PCTG  
        dct_report['BADRATE'] = BADRATE  
    val_repot = pd.DataFrame(dct_report)  
    print(val_repot)
    
    
    
    #%% 自定义损失函数,需要提供损失函数的一阶导和二阶导  
    def loglikelood(preds, dtrain):  
        labels = dtrain.get_label()  
        preds = 1.0 / (1.0 + np.exp(-preds))  
        grad = preds - labels  
        hess = preds * (1.0-preds)  
        return grad, hess  
      
    # 自定义前20%正样本占比最大化评价函数  
    def binary_error(preds, train_data):  
        labels = train_data.get_label()  
        dct = pd.DataFrame({'pred':preds,'percent':preds,'labels':labels})  
        #取百分位点对应的阈值  
        key = dct['percent'].quantile(0.2)  
        #按照阈值处理成二分类任务  
        dct['percent']= dct['percent'].map(lambda x :1 if x <= key else 0)    
        #计算评价函数,权重默认0.5,可以根据情况调整  
        result = np.mean(dct[dct.percent== 1]['labels'] == 1)*0.5 
                   + np.mean((dct.labels - dct.pred)**2)*0.5  
        return 'error',result  
      
    watchlist  = [(dtest,'eval'), (dtrain,'train')]  
    param = {'max_depth':3, 'eta':0.1, 'silent':1}  
    num_round = 100  
    # 自定义损失函数训练  
    bst = xgb.train(param, dtrain, num_round, watchlist, loglikelood, binary_error) 

    展示一些过程图片

     

  • 相关阅读:
    .Net Core ----通过XUnit进行接口单元测试(带请求头及参数)并用output输出结果
    .Net Core---- 通过EPPlus批量导出
    .Net Core---- 自带Json返回日期带T格式 解决
    You need tcl 8.5 or newer in order to run the Redis test
    exec: "docker-proxy": executable file not found in $PATH
    docker 如何清理垃圾呢
    docker run 报错——WARNING: IPv4 forwarding is disabled. Networking will not work.
    go 依赖包管理工具gb安装报错
    keepalived实现nginx高可用
    php命令行查看扩展信息
  • 原文地址:https://www.cnblogs.com/cgmcoding/p/15351744.html
Copyright © 2011-2022 走看看