4557: [JLoi2016]侦察守卫
Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 297 Solved: 200
[Submit][Status][Discuss]
Description
小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的
。换句话说,游戏的地图是一棵有N个节点的树。游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦
查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的
距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不
同点放置守卫的代价可能不同。现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价
。
Input
第一行包含两个正整数N和D,分别表示地图上的点数和侦查守卫的视野范围。约定地图上的点用1到N的整数编号。
第二行N个正整数,第i个正整数表示在编号为i的点放置侦查守卫的代价Wi。保证Wi≤1000。第三行一个正整数M,
表示B神可能出现的点的数量。保证M≤N。第四行M个正整数,分别表示每个B神可能出现的点的编号,从小到大不
重复地给出。接下来N–1行,每行包含两个正整数U,V,表示在编号为U的点和编号为V的点之间有一条无向边。N<=
500000,D<=20
Output
仅一行一个整数,表示监视所有B神可能出现的点所需要的最小代价
Sample Input
12 2
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12
Sample Output
10
题解:树形DP
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<string>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<iomanip>
using namespace std;
#define ll long long
#define db double
#define up(i,j,n) for(int i=j;i<=n;i++)
#define pii pair<int,int>
#define uint unsigned int
#define FILE "dealing"
#define eps 1e-4
int read(){
int x=0,f=1,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
template<class T> bool cmax(T& a,T b){return a<b?a=b,true:false;}
template<class T> bool cmin(T& a,T b){return a>b?a=b,true:false;}
const int maxn=505000,limit=50100,inf=1000000000,r=3,mod=1000000007;
int N,D;
struct node{
int y,next;
}e[maxn<<1];
int len=0,linkk[maxn],vis[maxn];
void insert(int x,int y){
e[++len].y=y;
e[len].next=linkk[x];
linkk[x]=len;
}
int f[maxn][22],g[maxn][22],w[maxn];
void dp(int x,int fa){
g[x][D+1]=inf;
if(vis[x])f[x][0]=g[x][0]=w[x];
up(i,1,D)g[x][i]=w[x];
for(int i=linkk[x];i;i=e[i].next){
int v=e[i].y;
if(v==fa)continue;
dp(v,x);
for(int j=D;j>=0;i--)g[x][j]=min(g[x][j+1],min(g[x][j]+f[v][j],g[v][j+1]+f[x][j+1]));
f[x][0]=g[x][0];
up(j,1,D+1)f[x][j]=min(f[x][j-1],f[x][j]+f[v][j-1]);
}
}
int main(){
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
N=read(),D=read();
up(i,1,N)w[i]=read();
int M=read();
up(i,1,M){
int x=read();
vis[x]=1;
}
up(i,2,N){
int x=read(),y=read();
insert(x,y);
insert(y,x);
}
dp(1,0);
cout<<f[1][0]<<endl;
return 0;
}