zoukankan      html  css  js  c++  java
  • 【Machine Learning in Action --2】K-最近邻分类

    1、K-近邻算法(KNN)概述

    K-近邻算法采用测量不同特征值之间的距离方法进行分类。

    工作原理:存在一个样本数据集合(也称作训练样本集),并且样本集中每个数据都存在标签(即我们知道样本集中每一数据与所属分类的对应关系)。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,通常k是不大于20的整数。最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

    例如:电影分类,用K-近邻算法分类爱情片和动作片,假如有一部未看过的电影,如何确定它是爱情片还是动作片?

    表1 每部电影的打斗镜头数、接吻镜头数以及电影评估类型

    电影名称 打斗镜头 接吻镜头 电影类型
    California Man 3 104 爱情片
    He's Not Really into Dudes 2 100 爱情片
    Beautiful Woman 1 81 爱情片
    Kevin Longblade 101 10 动作片
    Robo Slayer 3000 99 5 动作片
    Amped II 98 2 动作片
    ? 18 90 未知

    首先计算未知电影与样本集中其他电影的距离(先忽略如何计算得到这些距离值),如表2

    表2 已知电影与未知电影的距离

    电影名称 与未知电影的距离
    California Man 20.5
    He's Not Really into Dudes 18.7
    Beautiful Woman 19.2
    Kevin Longblade 115.3
    Robo Slayer 3000 117.4
    Amped II 118.9

    现在按照距离递增排序,可以找到K个距离最近的电影。假定K=3,则三个最靠近的电影依次是He's Not Really into Dudes、Beautiful Woman、California Man。K-近邻算法按照距离最近的三部电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

    2、K-近邻算法的一般流程

    (1)收集数据:可以使用任何方法

    (2)准备数据:距离计算所需要的数值,最好是结构化的数据格式

    (3)分析数据:可以使用任何方法

    (4)训练算法:此步骤不适合用于K-近邻算法

    (5)测试算法:计算错误率

    (6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行K-近邻算法判定输入数据分别属于那个类别,最后应用对计算出的分类执行后续的处理。

     3、用python实现kNN算法

    首先创建名为kNN.py模块

    在kNN.py文件中增加下面代码:

    # -*- coding: utf-8 -*-
    from numpy import *     #引入科学计算包numpy
    import operator         #经典python函数库,运算符模块。
    #创建数据集
    def createDataSet():
        group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
        labels=['A','A','B','B']
        return group,labels
    #k-近邻算法核心
    #inX:用户分类的输入向量,即将对其进行分类
    #dataSet:训练样本集
    #labels:标签向量
    def classifyO(inX,dataSet,labels,k):     
        #距离计算
        dataSetSize=dataSet.shape[0] #得到数组的行数,即知道有几个训练数据,这里为4
        diffMat=tile(inX,(dataSetSize,1))-dataSet  #tile是numpy中的函数,tile将一个数组,扩充成了4个一样的数组;diffMat得到目标与训练数值之间的差值
        sqDiffMat=diffMat**2         #各个差值分别平方
        sqDistances=sqDiffMat.sum(axis=1)  #对平方后的数据求和,sum(axis=1)表示求矩阵的行的和
        distances=sqDistances**0.5   #开方,得到距离
        sortedDistIndicies=distances.argsort()  #对距离进行升序排列
        #选择距离最小的k个点
        classCount={}
        for i in range(k):
            voteIlabel=labels[sortedDistIndicies[i]]  #获得前k个距离对应的类标签
            classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 #对这些类标签进行统计,求出对应的数量,形成的列表有两列,一列为类标签,一列为数量
        #排序
           sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)  #对上面前k个类标签数量进行排序
        return sortedClassCount[0][0] #取最小的距离对应的类标签

    在centos中运行(kNN.py在desktop/algorithm/)

    #cd algorithm
    #python
    >>>import kNN
    >>>group,labels=kNN.createDataSet()
    >>>group
    array([[1. , 1.1],
               [1. , 1.  ],
               [0. , 0.  ],
               [0. , 0.1] ])
    >>>labels
    ['A','A','B','B']
    >>>kNN.classifyO([0,0],group,labels,3) #输入[0,0]测试值,测试运行结果
    'B'

    4、kNN算法的优缺点

    优点:精度高,对异常数据不敏感(你的类别是由邻居中的大多数决定的,一个异常邻居并不能影响太大),无数据输入假定;

    缺点:计算发杂度高(需要计算新的数据点与样本集中每个数据的“距离”,以判断是否是前k个邻居),空间复杂度高(巨大的矩阵);无法给出任何数据的基础结构信息,无法知晓平均实例样本和典型实例样本具有什么特征。

    适用数据范围:数值型(目标变量可以从无限的数值集合中取值)和标称型(目标变量只有在有限目标集中取值)。

     

     

     

  • 相关阅读:
    C#开发微信公众平台-就这么简单(附Demo)
    Newtonsoft.Json高级用法
    C#获取文件的MD5码
    C#动态执行代码
    c#插件式开发
    利用反射执行代码
    yield关键字用法与解析(C# 参考)
    HttpContext.Current.Cache和HttpRuntime.Cache的区别,以及System.Runtime.Caching
    GZip压缩与解压缩
    Asp.Net 请求处理机制
  • 原文地址:https://www.cnblogs.com/chamie/p/4811867.html
Copyright © 2011-2022 走看看