zoukankan      html  css  js  c++  java
  • Java集合四LinkedList

    LinkedList简介####

      继承于AbstractSequentialList的双向链表,可以被当做堆栈、队列或双端队列进行操作。
      LinkedList本质上是一个双向链表,实现了Dequeue接口。
      LinkedList包含两个重要的成员:header和size。
      header是双向链表的表头,它是双向链表节点所对应的类Node的实例。Node中包含成员变量:prev、next、item。其中prev是该节点的上一个节点,next是该节点的下一个节点,item是该节点所包含的值。

        private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }
    

      size是双向链表中节点的个数。

    LinkedList构造函数####

      //默认构造函数
      LinkedList() ;
      //创建一个LinkedList,包含Collection中的全部元素
      LinkedList(Collection<? extends E> c);
    

    源码分析####

    package java.util;
    
    import java.util.function.Consumer;
    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    {
    	//集合的大小
        transient int size = 0;
    	//表头
        transient Node<E> first;
    	//表尾
        transient Node<E> last;
    	
    	//构造函数
        public LinkedList() {
        }
        public LinkedList(Collection<? extends E> c) {
            this();
            addAll(c);
        }
        private void linkFirst(E e) {
            final Node<E> f = first;
    		//创建新的节点,新节点的后继指向原来的头节点,即将原头节点向后移一位,新节点代替头结点的位置。  
            final Node<E> newNode = new Node<>(null, e, f);
    		//表头设定为新节点
            first = newNode;
    		//如果往后移位的节点为空,则新表头节点就是最后一个节点
    		//否则移位节点的上一节点是新节点
            if (f == null)
                last = newNode;
            else
                f.prev = newNode;
    		//容量和代码改变计数增加
            size++;
            modCount++;
        }
    	//在链表结尾添加元素,类似linkFirst(E e)
        void linkLast(E e) {
            final Node<E> l = last;
            final Node<E> newNode = new Node<>(l, e, null);
            last = newNode;
            if (l == null)
                first = newNode;
            else
                l.next = newNode;
            size++;
            modCount++;
        }
    
    	//在非空节点succ之前插入节点e
    	//即插入节点,要处理三个节点的信息,主要是next和prev的值的改变
        void linkBefore(E e, Node<E> succ) {
    		//succ的上一个节点
            final Node<E> pred = succ.prev;
    		//创建一个节点,将新节点的上一个节点设定为succ的上一节点,将新节点的下一节点设定为succ
            final Node<E> newNode = new Node<>(pred, e, succ);
    		//设定succ的上一节点是新建的节点
            succ.prev = newNode;
    		//如果新建节点的上一节点为null,则新建节点为表头节点
            if (pred == null)
                first = newNode;
            else
    			//设定上一节点的下一节点是新建的节点
                pred.next = newNode;
            size++;
            modCount++;
        }
    
    	//释放非空的首节点
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            f.item = null;
            f.next = null; // help GC
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            size--;
            modCount++;
            return element;
        }
    	//释放非空的尾节点
        private E unlinkLast(Node<E> l) {
            // assert l == last && l != null;
            final E element = l.item;
            final Node<E> prev = l.prev;
            l.item = null;
            l.prev = null; // help GC
            last = prev;
            if (prev == null)
                first = null;
            else
                prev.next = null;
            size--;
            modCount++;
            return element;
        }
    	//释放非空节点x
        E unlink(Node<E> x) {
            // assert x != null;
            final E element = x.item;
            final Node<E> next = x.next;
            final Node<E> prev = x.prev;
    
            if (prev == null) {
                first = next;
            } else {
                prev.next = next;
                x.prev = null;
            }
    
            if (next == null) {
                last = prev;
            } else {
                next.prev = prev;
                x.next = null;
            }
    
            x.item = null;
            size--;
            modCount++;
            return element;
        }
    	//获取首节点的元素
        public E getFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return f.item;
        }
    	//获取尾节点的元素
        public E getLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return l.item;
        }
    	//删除首节点
        public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }
    	//删除尾节点
        public E removeLast() {
            final Node<E> l = last;
            if (l == null)
                throw new NoSuchElementException();
            return unlinkLast(l);
        }
    	//添加元素到首节点
        public void addFirst(E e) {
            linkFirst(e);
        }
    	//添加元素到尾节点
        public void addLast(E e) {
            linkLast(e);
        }
    	//判断是否包含指定元素
        public boolean contains(Object o) {
            return indexOf(o) >= 0;
        }
    	//集合大小
        public int size() {
            return size;
        }
    	//添加元素,默认是添加到尾节点
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
    	//删除指定元素节点
        public boolean remove(Object o) {
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
    			//遍历并判断,再调用unlink()方法删除指定元素
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        return true;
                    }
                }
            }
            return false;
        }
    	//添加Collection到集合中
        public boolean addAll(Collection<? extends E> c) {
    		//这里是从链表尾节点开始插入的
            return addAll(size, c);
        }
    	//从指定位置插入集合
        public boolean addAll(int index, Collection<? extends E> c) {
            checkPositionIndex(index);
    		//将要插入的集合转换成数组
            Object[] a = c.toArray();
            int numNew = a.length;
            if (numNew == 0)
                return false;
    
            Node<E> pred, succ;
            if (index == size) {
                succ = null;
                pred = last;
            } else {
                succ = node(index);
                pred = succ.prev;
            }
    		//遍历并将数组中的元素添加到链表中
    		//注意:所有增加删除链表节点的操作都必须要对上一节点、本节点、下一节点进行修改
            for (Object o : a) {
                @SuppressWarnings("unchecked") E e = (E) o;
                Node<E> newNode = new Node<>(pred, e, null);
                if (pred == null)
                    first = newNode;
                else
                    pred.next = newNode;
                pred = newNode;
            }
    
            if (succ == null) {
                last = pred;
            } else {
                pred.next = succ;
                succ.prev = pred;
            }
    
            size += numNew;
            modCount++;
            return true;
        }
    	//循环遍历并设定为null
        public void clear() {
            for (Node<E> x = first; x != null; ) {
                Node<E> next = x.next;
                x.item = null;
                x.next = null;
                x.prev = null;
                x = next;
            }
            first = last = null;
            size = 0;
            modCount++;
        }
    	//获取指定位置节点的元素
        public E get(int index) {
            checkElementIndex(index);
            return node(index).item;
        }
    
    	//设定指定节点的元素
        public E set(int index, E element) {
            checkElementIndex(index);
            Node<E> x = node(index);
            E oldVal = x.item;
            x.item = element;
            return oldVal;
        }
    
    	//添加元素到指定节点
        public void add(int index, E element) {
            checkPositionIndex(index);
    
            if (index == size)
                linkLast(element);
            else
                linkBefore(element, node(index));
        }
    	//删除指定节点
        public E remove(int index) {
            checkElementIndex(index);
            return unlink(node(index));
        }
    	////判断指定索引位置的元素是否存在
        private boolean isElementIndex(int index) {
            return index >= 0 && index < size;
        }
    	//
        private boolean isPositionIndex(int index) {
            return index >= 0 && index <= size;
        }
    
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
    
        private void checkElementIndex(int index) {
            if (!isElementIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        private void checkPositionIndex(int index) {
            if (!isPositionIndex(index))
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    	
    	////返回指定索引位置的节点
        Node<E> node(int index) {
       
    		//如果索引小于集合大小的一般,从表头节点开始查找
            if (index < (size >> 1)) {
                Node<E> x = first;
                for (int i = 0; i < index; i++)
                    x = x.next;
                return x;
            } else {
    			//否则从表尾节点开始查找
                Node<E> x = last;
                for (int i = size - 1; i > index; i--)
                    x = x.prev;
                return x;
            }
        }
    	//返回指定元素首次出现的节点位置
        public int indexOf(Object o) {
            int index = 0;
            if (o == null) {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (x.item == null)
                        return index;
                    index++;
                }
            } else {
                for (Node<E> x = first; x != null; x = x.next) {
                    if (o.equals(x.item))
                        return index;
                    index++;
                }
            }
            return -1;
        }
    	//返回指定元素最后一次出现的节点位置
        public int lastIndexOf(Object o) {
            int index = size;
            if (o == null) {
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (x.item == null)
                        return index;
                }
            } else {
                for (Node<E> x = last; x != null; x = x.prev) {
                    index--;
                    if (o.equals(x.item))
                        return index;
                }
            }
            return -1;
        }
    	//获取但不移除此列表的头(第一个元素)。
        public E peek() {
            final Node<E> f = first;
            return (f == null) ? null : f.item;
        }
    	//获取但不移除此列表的头(第一个元素)。
        public E element() {
            return getFirst();
        }
    	// 获取并移除此列表的头(第一个元素)
        public E poll() {
            final Node<E> f = first;
            return (f == null) ? null : unlinkFirst(f);
        }
    	//删除首节点
        public E remove() {
            return removeFirst();
        }
    	//将指定元素添加到此列表的末尾(最后一个元素)
    	//调用的是add()函数
        public boolean offer(E e) {
            return add(e);
        }
    	//将指定元素添加到此列表的表头
        public boolean offerFirst(E e) {
            addFirst(e);
            return true;
        }
    	//将指定元素添加到此列表的末尾
        public boolean offerLast(E e) {
            addLast(e);
            return true;
        }
    	//获取但不移除此列表的头(第一个元素)。
    	//和peek()函数代码一致
        public E peekFirst() {
            final Node<E> f = first;
            return (f == null) ? null : f.item;
         }
    	//获取但不移除此列表的末尾
        public E peekLast() {
            final Node<E> l = last;
            return (l == null) ? null : l.item;
        }
    	//获取并移除此列表的表头
    	//和poll()函数代码一致
        public E pollFirst() {
            final Node<E> f = first;
            return (f == null) ? null : unlinkFirst(f);
        }
    	//获取并移除此列表的末尾
        public E pollLast() {
            final Node<E> l = last;
            return (l == null) ? null : unlinkLast(l);
        }
    	//添加元素到列表表头
        public void push(E e) {
            addFirst(e);
        }
    	//删除并返回列表表头
        public E pop() {
            return removeFirst();
        }
    	//删除指定元素第一次出现的节点
        public boolean removeFirstOccurrence(Object o) {
            return remove(o);
        }
    	//返回指定元素最后一次出现的节点,这里是从列表末尾开始遍历的
        public boolean removeLastOccurrence(Object o) {
            if (o == null) {
                for (Node<E> x = last; x != null; x = x.prev) {
                    if (x.item == null) {
                        unlink(x);
                        return true;
                    }
                }
            } else {
                for (Node<E> x = last; x != null; x = x.prev) {
                    if (o.equals(x.item)) {
                        unlink(x);
                        return true;
                    }
                }
            }
            return false;
        }
    	//遍历
        public ListIterator<E> listIterator(int index) {
            checkPositionIndex(index);
            return new ListItr(index);
        }
    
        private class ListItr implements ListIterator<E> {
            private Node<E> lastReturned;
            private Node<E> next;
            private int nextIndex;
            private int expectedModCount = modCount;
    
            ListItr(int index) {
                // assert isPositionIndex(index);
                next = (index == size) ? null : node(index);
                nextIndex = index;
            }
    
            public boolean hasNext() {
                return nextIndex < size;
            }
    
            public E next() {
                checkForComodification();
                if (!hasNext())
                    throw new NoSuchElementException();
    
                lastReturned = next;
                next = next.next;
                nextIndex++;
                return lastReturned.item;
            }
    
            public boolean hasPrevious() {
                return nextIndex > 0;
            }
    
            public E previous() {
                checkForComodification();
                if (!hasPrevious())
                    throw new NoSuchElementException();
    
                lastReturned = next = (next == null) ? last : next.prev;
                nextIndex--;
                return lastReturned.item;
            }
    
            public int nextIndex() {
                return nextIndex;
            }
    
            public int previousIndex() {
                return nextIndex - 1;
            }
    
            public void remove() {
                checkForComodification();
                if (lastReturned == null)
                    throw new IllegalStateException();
    
                Node<E> lastNext = lastReturned.next;
                unlink(lastReturned);
                if (next == lastReturned)
                    next = lastNext;
                else
                    nextIndex--;
                lastReturned = null;
                expectedModCount++;
            }
    
            public void set(E e) {
                if (lastReturned == null)
                    throw new IllegalStateException();
                checkForComodification();
                lastReturned.item = e;
            }
    
            public void add(E e) {
                checkForComodification();
                lastReturned = null;
                if (next == null)
                    linkLast(e);
                else
                    linkBefore(e, next);
                nextIndex++;
                expectedModCount++;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Objects.requireNonNull(action);
                while (modCount == expectedModCount && nextIndex < size) {
                    action.accept(next.item);
                    lastReturned = next;
                    next = next.next;
                    nextIndex++;
                }
                checkForComodification();
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    
    	//链表的数据结构
        private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }
    
        /**
         * @since 1.6
         */
        public Iterator<E> descendingIterator() {
            return new DescendingIterator();
        }
    
        /**
         * Adapter to provide descending iterators via ListItr.previous
         */
        private class DescendingIterator implements Iterator<E> {
            private final ListItr itr = new ListItr(size());
            public boolean hasNext() {
                return itr.hasPrevious();
            }
            public E next() {
                return itr.previous();
            }
            public void remove() {
                itr.remove();
            }
        }
    
        @SuppressWarnings("unchecked")
        private LinkedList<E> superClone() {
            try {
                return (LinkedList<E>) super.clone();
            } catch (CloneNotSupportedException e) {
                throw new InternalError(e);
            }
        }
    	//克隆
        public Object clone() {
            LinkedList<E> clone = superClone();
    
            // Put clone into "virgin" state
            clone.first = clone.last = null;
            clone.size = 0;
            clone.modCount = 0;
    
            // Initialize clone with our elements
            for (Node<E> x = first; x != null; x = x.next)
                clone.add(x.item);
    
            return clone;
        }
    	//转换为数组
        public Object[] toArray() {
            Object[] result = new Object[size];
            int i = 0;
            for (Node<E> x = first; x != null; x = x.next)
                result[i++] = x.item;
            return result;
        }
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            if (a.length < size)
                a = (T[])java.lang.reflect.Array.newInstance(
                                    a.getClass().getComponentType(), size);
            int i = 0;
            Object[] result = a;
            for (Node<E> x = first; x != null; x = x.next)
                result[i++] = x.item;
    
            if (a.length > size)
                a[size] = null;
    
            return a;
        }
    	//序列化
        private static final long serialVersionUID = 876323262645176354L;
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
            // Write out any hidden serialization magic
            s.defaultWriteObject();
    
            // Write out size
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (Node<E> x = first; x != null; x = x.next)
                s.writeObject(x.item);
        }
    
        /**
         * Reconstitutes this {@code LinkedList} instance from a stream
         * (that is, deserializes it).
         */
        @SuppressWarnings("unchecked")
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            // Read in any hidden serialization magic
            s.defaultReadObject();
    
            // Read in size
            int size = s.readInt();
    
            // Read in all elements in the proper order.
            for (int i = 0; i < size; i++)
                linkLast((E)s.readObject());
        }
    
        @Override
        public Spliterator<E> spliterator() {
            return new LLSpliterator<>(this, -1, 0);
        }
    
        /** A customized variant of Spliterators.IteratorSpliterator */
        static final class LLSpliterator<E> implements Spliterator<E> {
            static final int BATCH_UNIT = 1 << 10;  // batch array size increment
            static final int MAX_BATCH = 1 << 25;  // max batch array size;
            final LinkedList<E> list; // null OK unless traversed
            Node<E> current;      // current node; null until initialized
            int est;              // size estimate; -1 until first needed
            int expectedModCount; // initialized when est set
            int batch;            // batch size for splits
    
            LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
                this.list = list;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getEst() {
                int s; // force initialization
                final LinkedList<E> lst;
                if ((s = est) < 0) {
                    if ((lst = list) == null)
                        s = est = 0;
                    else {
                        expectedModCount = lst.modCount;
                        current = lst.first;
                        s = est = lst.size;
                    }
                }
                return s;
            }
    
            public long estimateSize() { return (long) getEst(); }
    
            public Spliterator<E> trySplit() {
                Node<E> p;
                int s = getEst();
                if (s > 1 && (p = current) != null) {
                    int n = batch + BATCH_UNIT;
                    if (n > s)
                        n = s;
                    if (n > MAX_BATCH)
                        n = MAX_BATCH;
                    Object[] a = new Object[n];
                    int j = 0;
                    do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                    current = p;
                    batch = j;
                    est = s - j;
                    return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
                }
                return null;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                Node<E> p; int n;
                if (action == null) throw new NullPointerException();
                if ((n = getEst()) > 0 && (p = current) != null) {
                    current = null;
                    est = 0;
                    do {
                        E e = p.item;
                        p = p.next;
                        action.accept(e);
                    } while (p != null && --n > 0);
                }
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
    
            public boolean tryAdvance(Consumer<? super E> action) {
                Node<E> p;
                if (action == null) throw new NullPointerException();
                if (getEst() > 0 && (p = current) != null) {
                    --est;
                    E e = p.item;
                    current = p.next;
                    action.accept(e);
                    if (list.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
                return false;
            }
    
            public int characteristics() {
                return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
            }
        }
    
    }
    
    

    遍历方式####

      1、迭代器Iterator
      2、快速随机访问get()方法
      3、增强for循环
      4、pollFirst()
      5、pollLast()
      6、removeFirst()
      7、removeLast()
      注:removeFirst()和removeLast()方法最快,因为一边读一边删。如果单纯读取。不删除原始数据,使用增强for循环。无论如何,不要使用随机访问,链表随机访问极其慢

  • 相关阅读:
    爱国论
    windows cmd: 打开windows系统程序或服务的常见命令
    Windows最常用的几个网络CMD命令总结
    什么是DNS劫持和DNS污染?
    windows cmd: 增强windows命令行
    NAT
    电信光纤猫 f412超级密码
    jvm之java类加载机制和类加载器(ClassLoader)的详解
    经典中的经典算法 动态规划(详细解释,从入门到实践,逐步讲解)
    首次适应算法、最佳适应算法和最差适应算法
  • 原文地址:https://www.cnblogs.com/changzuidaerguai/p/8856011.html
Copyright © 2011-2022 走看看