zoukankan      html  css  js  c++  java
  • POJ1474 Video Surveillance(半平面交)

    求多边形核的存在性,过了这题但是过不了另一题的,不知道是模板的问题还是什么,但是这个模板还是可以过绝大部分的题的。。。

    #pragma warning(disable:4996)
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <cmath>
    #include <string>
    #include <algorithm>
    using namespace std;
    
    #define maxn 2500
    #define eps 1e-7
    
    int n;
    
    int dcmp(double x){
    	return x<-eps ? -1 : x>eps;
    }
    
    struct Point
    {
    	double x, y;
    	Point(){}
    	Point(double _x, double _y) :x(_x), y(_y){}
    	Point operator + (const Point &b) const{
    		return Point(x + b.x, y + b.y);
    	}
    	Point operator - (const Point &b) const{
    		return Point(x - b.x, y - b.y);
    	}
    	Point operator *(double d) const{
    		return Point(x*d, y*d);
    	}
    	Point operator /(double d) const{
    		return Point(x / d, y / d);
    	}
    	double det(const Point &b) const{
    		return x*b.y - y*b.x;
    	}
    	double dot(const Point &b) const{
    		return x*b.x + y*b.y;
    	}
    	Point rot90(){
    		return Point(-y, x);
    	}
    	Point norm(){
    		double len = sqrt(this->dot(*this));
    		return Point(x, y) / len;
    	}
    	void read(){
    		scanf("%lf%lf", &x, &y);
    	}
    };
    
    #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
    #define crossOp(p1,p2,p3) (dcmp(cross(p1,p2,p3)))
    
    Point isSS(Point p1, Point p2, Point q1, Point q2){
    	double a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
    	return (p1*a2 + p2*a1) / (a1 + a2);
    }
    
    struct Border
    {
    	Point p1, p2;
    	double alpha;
    	void setAlpha(){
    		alpha = atan2(p2.y - p1.y, p2.x - p1.x);
    	}
    };
    
    bool operator < (const Border &a, const Border &b) {
    	int c = dcmp(a.alpha - b.alpha);
    	if (c != 0) {
    		return c > 0;
    	}
    	else {
    		return crossOp(b.p1, b.p2, a.p1) > 0;
    	}
    }
    
    bool operator == (const Border &a, const Border &b){
    	return dcmp(a.alpha - b.alpha) == 0;
    }
    
    
    Point isBorder(const Border &a, const Border &b){
    	return isSS(a.p1, a.p2, b.p1, b.p2);
    }
    
    Border border[maxn];
    Border que[maxn];
    int qh, qt;
    // check函数判断的是新加的半平面和由a,b两个半平面产生的交点的方向,若在半平面的左侧返回True
    bool check(const Border &a, const Border &b, const Border &me){
    	Point is = isBorder(a, b);
    	return crossOp(me.p1, me.p2, is) >= 0;
    }
    
    bool isParellel(const Border &a, const Border &b){
    	return dcmp((a.p2 - a.p1).det(b.p2 - b.p1)) == 0;
    }
    
    bool convexIntersection()
    {
    	qh = qt = 0;
    	sort(border, border + n);
    	n = unique(border, border + n) - border;
    	for (int i = 0; i < n; i++){
    		Border cur = border[i];
    		while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], cur)) --qt;
    		while (qh + 1 < qt&&!check(que[qh], que[qh + 1], cur)) ++qh;
    		que[qt++] = cur;
    	}
    	while (qh + 1 < qt&&!check(que[qt - 2], que[qt - 1], que[qh])) --qt;
    	while (qh + 1 < qt&&!check(que[qh], que[qh + 1], que[qt - 1])) ++qh;
    	return qt - qh > 2;
    }
    
    Point ps[maxn];
    
    int main()
    {
    	int ca = 0;
    	while (cin >> n&&n)
    	{
    		for (int i = 0; i < n; i++){
    			ps[i].read();
    		}
    		ps[n] = ps[0];
    		for (int i = 0; i < n; i++){
    			border[i].p1 = ps[i + 1];
    			border[i].p2 = ps[i];
    			border[i].setAlpha();
    		}
    		printf("Floor #%d
    ", ++ca);
    		if (convexIntersection()) {
    			puts("Surveillance is possible.");
    		}
    		else puts("Surveillance is impossible.");
    		puts("");
    	}
    	return 0;
    }
    
  • 相关阅读:
    Selenium之编辑框操作
    Selenium之勾选框操作
    Selenium之单选框操作
    [复习资料]组合计数学习笔记
    ARC104游记
    [被踩计划] 题解 [省选联考 2020 A 卷] 作业题
    题解 [SEERC2019]Game on a Tree
    [被踩计划] 题解 [NOI2020]美食家
    [被踩计划] 题解 [省选联考 2020 A 卷] 组合数问题
    [被踩计划] 题解 括号树
  • 原文地址:https://www.cnblogs.com/chanme/p/3710586.html
Copyright © 2011-2022 走看看