zoukankan      html  css  js  c++  java
  • POJ1811 Prime Test(miller素数判断&&pollar_rho大数分解)

    http://blog.csdn.net/shiyuankongbu/article/details/9202373

    发现自己原来的那份模板是有问题的,而且竟然找不出是哪里的问题,所以就用了上面的链接上的一份代码,下面只是寄存一下这份代码,以后打印出来当模板好了。

    #pragma warning(disable:4996)
    #include <iostream>  
    #include <cstring>  
    #include <algorithm>  
    #include <cmath>  
    #include <map>  
    #include <cstdlib>  
    #include <cstdio>  
    using namespace std;
    
    #define Times 10  
    map<long long, int>m;
    long long mi;
    long long random(long long n)
    {
    	return ((double)rand() / RAND_MAX*n + 0.5);
    }
    
    long long multi(long long a, long long b, long long mod)
    {
    	long long ans = 0;
    	while (b){
    		if (b & 1) ans = (ans + a) % mod;
    		b >>= 1;
    		a = (a << 1) % mod;
    	}
    	return ans;
    }
    long long Pow(long long a, long long b, long long mod)
    {
    	long long ans = 1;
    	while (b){
    		if (b & 1) ans = multi(ans, a, mod);
    		b >>= 1;
    		a = multi(a, a, mod);
    	}
    	return ans;
    }
    bool witness(long long a, long long n)
    {
    	long long d = n - 1;
    	while (!(d & 1))
    		d >>= 1;
    	long long t = Pow(a, d, n);
    	while (d != n - 1 && t != 1 && t != n - 1)
    	{
    		t = multi(t, t, n);
    		d <<= 1;
    	}
    	return t == n - 1 || d & 1;
    }
    bool miller_rabin(long long n)
    {
    	if (n == 2)
    		return true;
    	if (n<2 || !(n & 1))
    		return false;
    	for (int i = 1; i <= Times; i++)
    	{
    		long long a = random(n - 2) + 1;
    		if (!witness(a, n))
    			return false;
    	}
    	return true;
    }
    long long gcd(long long a, long long b)
    {
    	return a&&b ? gcd(b, a%b) : a + b;
    }
    long long pollard_rho(long long n, int c)
    {
    	long long x, y, d, i = 1, k = 2;
    	x = random(n - 2) + 1;
    	y = x;
    	while (1){
    		i++;
    		x = (multi(x, x, n) + c) % n;
    		d = gcd(y - x, n);
    		if (1<d&&d<n)
    			return d;
    		if (y == x)
    			return n;
    		if (i == k){
    			y = x;
    			k <<= 1;
    		}
    	}
    }
    void find(long long n, int c)
    {
    	if (n == 1)
    		return;
    	if (miller_rabin(n)){
    		m[n]++;  
    		mi = min(mi, n);
    		return;
    	}
    	long long p = n;
    	while (p >= n)
    		p = pollard_rho(p, c--);
    	find(p, c);
    	find(n / p, c);
    }
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		long long n;
    		scanf("%lld", &n);
    		mi = n;
    		if (miller_rabin(n))
    			cout << "Prime" << endl;
    		else
    		{
    			find(n, 12312);
    			cout << mi << endl;
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    ios开发之--把秒转换为天时分秒
    网络爬虫的类型
    网络爬虫的组成
    为什么要学网络爬虫
    什么是网络爬虫
    Windows 下安装 Python3
    Linux 下安装 Python3
    HTTP 代理
    HTTP Cookies
    爬虫的基本原理
  • 原文地址:https://www.cnblogs.com/chanme/p/3873280.html
Copyright © 2011-2022 走看看