进程同步(锁)
现在有这么情况,我们模仿了一个抢票软件,文件里有十张票,一共有二十个人去抢,抢走一张就少一张,二十个人我们为了达到并发的效果,显然是要以多进程来实现的,那么这时候就有一个问题,好几个人同时看到的都是还剩下10张票,每个人都抢了一张,结果只是剩下19。问题就是这个,应该是某个人在抢的时候,其他人无法抢才对。所以这时候我们就需要给这个步骤上锁,只要有进程在执行的时候,别的进程就无法执行这段代码,只能等待。
这时候我们需要在multiprocessing中导入一个Lock类。
#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db.txt'))
print(' 33[43m剩余票数%s 33[0m' %dic['count'])
def get():
dic=json.load(open('db.txt'))
time.sleep(0.1) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(0.2) #模拟写数据的网络延迟
json.dump(dic,open('db.txt','w'))
print(' 33[43m购票成功 33[0m')
def task(lock):
search()
lock.acquire()
get()
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()
加锁:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全
在我们主进程的代码里面生成一个锁(只能在这里,才是一个锁,在上面的方法里的话就是生成多个锁了),然后把这个锁的对象当做参数传进去。lock.acquire()就是开启锁,只有一个进程能进去执行,下一个进程想进去必须要等lock.release()释放才能进去。这就很好的实现了这段代码只有一个进程才能跑,操作文件同时只能一个进程。
加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全
那我速度降低了我肯定不乐意啊,有没有什么方法能够两全其美呢?还真有。
那就是队列和管道
队列≈管道+锁
你懂我意思吧,管道废了,滚。
队列
举个栗子。
凉轻松去一家包子店吃包子,厨师只管自己做包子,做完一个就放一个进大盘子里,凉轻松只管从大盘子里拿包子,没了就等着。这个大盘子就是所谓的队列。
创建方式
Queue([maxsize])
maxsize是队列中允许最大项数,省略则无大小限制。
1 q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
2 q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.
3 q.get_nowait():同q.get(False),就是说不等,有就拿,没有就砸店
4 q.put_nowait():同q.put(False),同上(厨师:我为什么要砸店?)
5 q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
6 q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
7 q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样
栗子
from multiprocessing import Process,Queue
import time,random
def producer(q,name,food):
'''生产者'''
for i in range(3):
print(f'{name}生产了{food}{i}')
time.sleep(random.randint(1, 3))
res = f'{food}{i}'
q.put(res)
# q.put(None)
def consumer(q,name):
'''消费者'''
while True:
res = q.get(timeout=5)
if res is None:break
time.sleep(random.randint(1,3))
print(f'{name}吃了{res}')
if __name__ == '__main__':
q = Queue()
p1 = Process(target=producer,args=(q,'rocky','包子'))
p2 = Process(target=producer,args=(q,'mac','韭菜'))
p3 = Process(target=producer,args=(q,'nick','蒜泥'))
c1 = Process(target=consumer,args=(q,'成哥'))
c2 = Process(target=consumer,args=(q,'浩南哥'))
p1.start()
p2.start()
p3.start()
c1.start()
c2.start()
p1.join()# 写了三个生产者的join,保证了生产者生产完毕,也就是生产者进程全结束了。
p2.join()#为什么这个要写在c1和c2 的start下面,因为这样才有边造边吃的效果
p3.join()
q.put(None)# 几个消费者put几次,一旦消费者接收到None,就会挂掉。
q.put(None)
既然讲到了包子,顺便也讲一下生产者和消费者!
生产者和消费者
很直白,厨师就是生产者,凉轻松就是消费者。
生产者: 生产数据的任务
消费者: 处理数据的任务
既然这样,我们就可以把上面的所有东西串起来了,用一个栗子来看
不行不行,还要讲一下一个东西。
JoinableQueue
这玩意儿也是在multiprocessing里的。
from multiprocessing import Process,Queue,JoinableQueue
q = JoinableQueue()
q.put('zhao') # 放队列里一个任务
q.put('qian')
print(q.get())
q.task_done() # 完成了一次任务
print(q.get())
q.task_done() # 完成了一次任务
q.join() #计数器不为0的时候 阻塞等待计数器为0后通过
# 想象成一个计数器 :put +1 task_done -1
每当往JoinableQueue队列里放一个东西,他的任务数就+1,每当拿走一个,我们就手动调用一下q的task_done方法,任务数就会-1,队列也是由join方法的,当任务数为0的时候,join才会不阻塞。
现在可以上总的栗子了!
综合实例
from multiprocessing import Process,Queue,JoinableQueue
import time,random
def producer(q,name,food):
'''生产者'''
for i in range(3):
print(f'{name}生产了{food}{i}')
time.sleep(random.randint(1, 3))
res = f'{food}{i}'
q.put(res)
# q.put(None)
def consumer(q,name):
'''消费者'''
while True:
res = q.get()
# if res is None:break
time.sleep(random.randint(1,3))
print(f'{name}吃了{res}')
q.task_done() #
if __name__ == '__main__':
q = JoinableQueue()
p1 = Process(target=producer,args=(q,'rocky','包子'))
p2 = Process(target=producer,args=(q,'mac','韭菜'))
p3 = Process(target=producer,args=(q,'nick','蒜泥'))
c1 = Process(target=consumer,args=(q,'成哥'))
c2 = Process(target=consumer,args=(q,'浩南哥'))
p1.start()
p2.start()
p3.start()
c1.daemon = True
c2.daemon = True
c1.start()
c2.start()
p1.join()
p2.join()
p3.join() # 生产者生产完毕
# q.put(None)# 几个消费者put几次
# q.put(None)
q.join() # 分析
# 生产者生产完毕--这是主进程最后一行代码结束--q.join()消费者已经取干净了,没有存在的意义了.
#这是主进程最后一行代码结束,消费者已经取干净了,没有存在的意义了.守护进程的概念.
rocky生产了包子0
mac生产了韭菜0
nick生产了蒜泥0
nick生产了蒜泥1
mac生产了韭菜1
rocky生产了包子1
nick生产了蒜泥2
浩南哥吃了韭菜0
mac生产了韭菜2
成哥吃了蒜泥0
rocky生产了包子2
成哥吃了蒜泥1
浩南哥吃了包子0
浩南哥吃了蒜泥2
浩南哥吃了包子1
成哥吃了韭菜1
浩南哥吃了韭菜2
成哥吃了包子2
至于为什么这么乱,因为操作系统的调度谁也不知道他是怎样的,你不知道他先执行哪个进程等等等等等。最后程序结束。
给力!
在补充一点管道的知识(即使我们不用他了)
#创建管道的类:
Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道
#参数介绍:
dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。
#主要方法:
conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
#其他方法:
conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法
conn1.fileno():返回连接使用的整数文件描述符
conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。
conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。
conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收
conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。
from multiprocessing import Process,Pipe
import time,os
def consumer(p,name):
left,right=p
left.close()
while True:
try:
baozi=right.recv()
print('%s 收到包子:%s' %(name,baozi))
except EOFError:
right.close()
break
def producer(seq,p):
left,right=p
right.close()
for i in seq:
left.send(i)
# time.sleep(1)
else:
left.close()
if __name__ == '__main__':
left,right=Pipe()
c1=Process(target=consumer,args=((left,right),'c1'))
c1.start()
seq=(i for i in range(10))
producer(seq,(left,right))
right.close()
left.close()
c1.join()
print('主进程')
看看就得了。