线程锁
from threading import Thread,Lock
x = 0
mutex = Lock()
def task():
global x
# mutex.acquire()
for i in range(200000):
x = x+1
# t1 的 x刚拿到0 保存状态 就被切了
# t2 的 x拿到0 进行+1 1
# t1 又获得运行了 x = 0 +1 1
# 思考:一共加了几次1? 加了两次1 真实运算出来的数字本来应该+2 实际只+1
# 这就产生了数据安全问题.
# mutex.release()
if __name__ == '__main__':
t1 = Thread(target=task)
t2 = Thread(target=task)
t3 = Thread(target=task)
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print(x)
531388
我们讲过的进程有进程锁,那么线程也有线程锁,先看上面代码,我们知道线程共享一个进程的空间,所以他们都对x进行增加操作,按道理来说,最后打印的结果应该是600000,而这里却远远不到,这是因为线程在进行长时间的操作时,cup切到下一个线程了,而这个时候可能x=1000+1,只执行到1000+1,所以就保存了这个状态,不管后面的线程对x做了多少次加一,最后回到了这个线程都会被重新赋值为1001。
所以要加上一个线程锁,把这个加的过程变成串行,就是注释的部分。当他运行太久了,切到了别的线程,别的线程也进不去,因为锁在第一个线程手上。因此,这一小段代码就是串行的。
死锁
什么是死锁:
互相都有对方继续执行下面代码的必须条件,且必须要拿到对方手里的必须条件后才能给对方他的必要条件。因此导致互相都无法继续执行。
概念是我自己总结的,看代码会比较明朗:
from threading import Thread,Lock
import time
lock1=Lock()
lock2=Lock()
class Mythread1(Thread):
def run(self):
self.task1()
def task1(self):
lock1.acquire()
print('a获得锁1')
time.sleep(3)
lock2.acquire()
print('a获得锁2')
lock1.release()
print('a释放锁1')
lock2.release()
print('a释放锁2')
class Mythread2(Thread):
def run(self):
self.task2()
def task2(self):
lock2.acquire()
print('b获得锁2')
time.sleep(3)
lock1.acquire()
print('b获得锁1')
lock2.release()
print('b释放锁2')
lock1.release()
print('b释放锁1')
t1 =Mythread1()
t1.start()
t2=Mythread2()
t2.start()
a获得锁1
b获得锁2
因为ti拿到了lock1,先要拿lock2,但是lock2这时候在t2手里,那么就要等t2释放lock2,而t2释放lock2却必须要先拿到lock1,而此时lock1在t1手里,这就造成了死锁。
接下来看一下多线程的时候,死锁的样子。
from threading import Thread,Lock
mutex1 = Lock()
mutex2 = Lock()
import time
class MyThreada(Thread):
def run(self):
self.task1()
self.task2()
def task1(self):
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
def task2(self):
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
time.sleep(1)
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
for i in range(3):
t = MyThreada()
t.start()
Thread-1 抢到了 锁1
Thread-1 抢到了 锁2
Thread-1 释放了 锁2
Thread-1 释放了 锁1
Thread-1 抢到了 锁2
Thread-2 抢到了 锁1
那么怎么解决死锁问题呢,用递归锁。
递归锁
递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁。
mutex1 = RLock()
mutex2 = mutex1
import time
class MyThreada(Thread):
def run(self):
self.task1()
self.task2()
def task1(self):
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
def task2(self):
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
time.sleep(1)
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
for i in range(3):
t = MyThreada()
t.start()
Thread-1 抢到了 锁1
Thread-1 抢到了 锁2
Thread-1 释放了 锁2
Thread-1 释放了 锁1
Thread-1 抢到了 锁2
Thread-1 抢到了 锁1
Thread-1 释放了 锁1
Thread-1 释放了 锁2
Thread-2 抢到了 锁1
Thread-2 抢到了 锁2
Thread-2 释放了 锁2
Thread-2 释放了 锁1
Thread-2 抢到了 锁2
Thread-2 抢到了 锁1
Thread-2 释放了 锁1
Thread-2 释放了 锁2
Thread-3 抢到了 锁1
Thread-3 抢到了 锁2
Thread-3 释放了 锁2
Thread-3 释放了 锁1
Thread-3 抢到了 锁2
Thread-3 抢到了 锁1
Thread-3 释放了 锁1
Thread-3 释放了 锁2
信号量
from threading import Thread,currentThread,Semaphore
import time
def task():
sm.acquire()
print(f'{currentThread().name} 在执行')
time.sleep(3)
sm.release()
sm = Semaphore(5)
for i in range(15):
t = Thread(target=task)
t.start()
他允许的就是同时有多少线程可以拿到这个锁。
GIL锁
在Cpython解释器中有一把GIL锁(全局解释器锁),GIl锁本质是一把互斥锁。
导致了同一个进程下,同一时间只能运行一个线程,无法利用多核优势.
同一个进程下多个线程只能实现并发不能实现并行.
为什么要有GIL?
因为cpython自带的垃圾回收机制不是线程安全的,所以要有GIL锁.
导致了同一个进程下,同一时间只能运行一个线程,无法利用多核优势.
分析:
我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程
计算密集型 推荐使用多进程
每个都要计算10s
多线程
在同一时刻只有一个线程会被执行,也就意味着每个10s都不能省,分开每个都要计算10s,共40.ns
多进程
可以并行的执行多个线程,10s+开启进程的时间
io密集型 推荐多线程
4个任务每个任务90%大部分时间都在io.
每个任务io10s 0.5s
多线程
可以实现并发,每个线程io的时间不咋占用cpu, 10s + 4个任务的计算时间
多进程
可以实现并行,10s+1个任务执行的时间+开进程的时间