zoukankan      html  css  js  c++  java
  • AdaBoostRegressor

    class sklearn.ensemble.AdaBoostRegressor(base_estimator=Nonen_estimators=50learning_rate=1.0loss='linear',random_state=None)[source]

    An AdaBoost regressor.

    An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

    This class implements the algorithm known as AdaBoost.R2 [2].

    Read more in the User Guide.

    Parameters:

    base_estimator : object, optional (default=DecisionTreeRegressor)

    The base estimator from which the boosted ensemble is built. Support for sample weighting is required.

    n_estimators : integer, optional (default=50)

    The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early.

    learning_rate : float, optional (default=1.)

    Learning rate shrinks the contribution of each regressor by learning_rate. There is a trade-off between learning_rate and n_estimators.

    loss : {‘linear’, ‘square’, ‘exponential’}, optional (default=’linear’)

    The loss function to use when updating the weights after each boosting iteration.

    random_state : int, RandomState instance or None, optional (default=None)

    If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

    Attributes:

    estimators_ : list of classifiers

    The collection of fitted sub-estimators.

    estimator_weights_ : array of floats

    Weights for each estimator in the boosted ensemble.

    estimator_errors_ : array of floats

    Regression error for each estimator in the boosted ensemble.

    feature_importances_ : array of shape = [n_features]

    The feature importances if supported by the base_estimator.

    See also

     

    AdaBoostClassifierGradientBoostingRegressorDecisionTreeRegressor

    References

    [R123] Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995.
    [R124]
    1. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

    Methods

    fit(X, y[, sample_weight]) Build a boosted regressor from the training set (X, y).
    get_params([deep]) Get parameters for this estimator.
    predict(X) Predict regression value for X.
    score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
    set_params(**params) Set the parameters of this estimator.
    staged_predict(X) Return staged predictions for X.
    staged_score(X, y[, sample_weight]) Return staged scores for X, y.
    __init__(base_estimator=Nonen_estimators=50learning_rate=1.0loss='linear',random_state=None)[source]
    feature_importances_
    Return the feature importances (the higher, the more important the
    feature).
    Returns: feature_importances_ : array, shape = [n_features]
    fit(Xysample_weight=None)[source]

    Build a boosted regressor from the training set (X, y).

    Parameters:

    X : {array-like, sparse matrix} of shape = [n_samples, n_features]

    The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

    y : array-like of shape = [n_samples]

    The target values (real numbers).

    sample_weight : array-like of shape = [n_samples], optional

    Sample weights. If None, the sample weights are initialized to 1 / n_samples.

    Returns:

    self : object

    Returns self.

    get_params(deep=True)[source]

    Get parameters for this estimator.

    Parameters:

    deep: boolean, optional :

    If True, will return the parameters for this estimator and contained subobjects that are estimators.

    Returns:

    params : mapping of string to any

    Parameter names mapped to their values.

    predict(X)[source]

    Predict regression value for X.

    The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.

    Parameters:

    X : {array-like, sparse matrix} of shape = [n_samples, n_features]

    The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

    Returns:

    y : array of shape = [n_samples]

    The predicted regression values.

    score(Xysample_weight=None)[source]

    Returns the coefficient of determination R^2 of the prediction.

    The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

    Parameters:

    X : array-like, shape = (n_samples, n_features)

    Test samples.

    y : array-like, shape = (n_samples) or (n_samples, n_outputs)

    True values for X.

    sample_weight : array-like, shape = [n_samples], optional

    Sample weights.

    Returns:

    score : float

    R^2 of self.predict(X) wrt. y.

    set_params(**params)[source]

    Set the parameters of this estimator.

    The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

    Returns: self :
    staged_predict(X)[source]

    Return staged predictions for X.

    The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble.

    This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost.

    Parameters:

    X : {array-like, sparse matrix} of shape = [n_samples, n_features]

    The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

    Returns:

    y : generator of array, shape = [n_samples]

    The predicted regression values.

    staged_score(Xysample_weight=None)[source]

    Return staged scores for X, y.

    This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost.

    Parameters:

    X : {array-like, sparse matrix} of shape = [n_samples, n_features]

    The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR.

    y : array-like, shape = [n_samples]

    Labels for X.

    sample_weight : array-like, shape = [n_samples], optional

    Sample weights.

    Returns:

    z : float

    A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail.

    [1]
    1. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

    ../../_images/plot_adaboost_regression_001.png

    print(__doc__)
    
    # Author: Noel Dawe <noel.dawe@gmail.com>
    #
    # License: BSD 3 clause
    
    # importing necessary libraries
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import AdaBoostRegressor
    
    # Create the dataset
    rng = np.random.RandomState(1)
    X = np.linspace(0, 6, 100)[:, np.newaxis]
    y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])
    
    # Fit regression model
    regr_1 = DecisionTreeRegressor(max_depth=4)
    
    regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
                              n_estimators=300, random_state=rng)
    
    regr_1.fit(X, y)
    regr_2.fit(X, y)
    
    # Predict
    y_1 = regr_1.predict(X)
    y_2 = regr_2.predict(X)
    
    # Plot the results
    plt.figure()
    plt.scatter(X, y, c="k", label="training samples")
    plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
    plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
    plt.xlabel("data")
    plt.ylabel("target")
    plt.title("Boosted Decision Tree Regression")
    plt.legend()
    plt.show()
  • 相关阅读:
    winform 通过 windows api 实现本机两个exe 消息推送
    winform ListView控件 绘制item和subitems颜色
    C# Windows Service创建和安装
    C# 解析xml文件(带命名空间 xmlns和 xmlns:xsi)
    H5+CSS3 实现分页功能
    C# HashTable Dictionary ConcurrentDictionary HashSet
    使用泛型返回类
    WPF的XAML注意点
    Http监听HttpListener接收请求的Nancy框架
    获取Windows后台进程
  • 原文地址:https://www.cnblogs.com/chaofn/p/4684176.html
Copyright © 2011-2022 走看看