虽然每次给一个区间,但是可以看作在区间内进行数个点操作,同样数列下标是动态变化的,如果我们将每个字符出现看作1,被删除看作0,则通过统计前缀和就能轻松计算出两个端点的位置了!这正是经典的树状数组操作
需要注意的是,即使每次找到了两个端点,如果只是朴素总左到右遍历会TLE,所以可以给每个字符开一个set,每个set储存字符出现的位置。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <string> 5 #include <map> 6 #include <set> 7 #include <vector> 8 #include <algorithm> 9 #pragma warning ( disable : 4996 ) 10 using namespace std; 11 12 int Max( int a, int b ) { return a>b?a:b; } 13 int Min( int a, int b ) { return a>b?b:a; } 14 int lowbit( int x ) { return x&-x; } 15 16 const int inf = 0x3f3f3f3f; 17 const int maxn = 2e5+5; 18 19 set<int> pos[65]; 20 set<int>::iterator it, it2; 21 char str[maxn]; 22 int istr[maxn]; 23 bool isdel[maxn]; 24 25 int len, q; 26 27 int getI( char c ) 28 { 29 if( c >= 'a' && c <= 'z' ) return c-'a'; 30 if( c >= 'A' && c <= 'Z' ) return c-'A'+26; 31 if( c >= '0' && c <= '9' ) return c-'0'+52; 32 } 33 34 int sum( int x ) 35 { 36 int ret = 0; 37 while( x > 0 ) 38 { ret += istr[x]; x -= lowbit(x); } 39 return ret; 40 } 41 42 void add( int x, int d ) 43 { 44 while( x <= len ) 45 { istr[x] += d; x += lowbit(x); } 46 } 47 48 int find( int s ) 49 { 50 int mid, lhs = 1, rhs = len; 51 int tmp; 52 while ( lhs <= rhs ) 53 { 54 mid = (lhs+rhs)>>1; 55 tmp = sum(mid); 56 if ( tmp >= s ) rhs = mid-1; 57 else lhs = mid+1; 58 } 59 return lhs; 60 } 61 62 void change( int l, int r, char c ) 63 { 64 int p = getI(c); 65 it = pos[p].lower_bound(l); 66 while ( it!=pos[p].end() && *it<=r ) 67 { 68 isdel[(*it)] = true; 69 add((*it), -1); 70 it2 = it; it++; 71 pos[p].erase(it2); 72 } 73 } 74 75 int main() 76 { 77 cin >> len >> q; 78 scanf("%s", str+1); 79 80 for ( int i = 1; i <= len; i++ ) 81 { 82 add(i,1); 83 int p = getI(str[i]); 84 pos[p].insert(i); 85 } 86 87 int x, y; 88 char c; 89 for ( int i = 1; i <= q; i++ ) 90 { 91 scanf( "%d %d %c", &x, &y, &c ); 92 x = find(x); y = find(y); 93 change( x, y, c ); 94 } 95 96 for( int i = 1; i <= len; i++ ) 97 if( !isdel[i] ) 98 printf( "%c", str[i] ); 99 100 printf(" "); 101 return 0; 102 }
我们看到区间操作,自然就会想到线段树,但是数列下标是动态变换的,乍一看似乎线段树就没有用武之地了。实际仔细想想,线段树也可以动态统计从哪个区间开始操作,相比普通线段树只是在每次操作前要计算新的下标到哪了,实际上每个节点管辖的范围是始终不变的,变的只是范围内字符的个数size,每次操作前通过这个size找到对应的左端点和右端点就行了。
1 //线段树 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #include <string> 6 #include <map> 7 #include <vector> 8 #include <algorithm> 9 #pragma warning ( disable : 4996 ) 10 using namespace std; 11 12 int Max( int a, int b ) { return a>b?a:b; } 13 int Min( int a, int b ) { return a>b?b:a; } 14 15 const int inf = 0x3f3f3f3f; 16 const int maxn = 2e5+2; 17 18 struct tree { 19 int size, lhs, rhs; 20 int clu[62]; 21 }t[maxn<<2]; 22 char str[maxn]; 23 24 int getI( char c ) 25 { 26 if( c >= 'a' && c <= 'z' ) return c-'a'; 27 if( c >= 'A' && c <= 'Z' ) return c-'A'+26; 28 if( c >= '0' && c <= '9' ) return c-'0'+52; 29 } 30 31 char getC( int i ) 32 { 33 if( i >= 0 && i <= 25 ) return 'a'+i; 34 if( i >= 26 && i <= 51 ) return 'A'+i-26; 35 if( i >= 52 && i <= 61 ) return '0'+i-52; 36 } 37 38 void pushUp( int index ) 39 { 40 t[index].size = t[index<<1].size + t[index<<1|1].size; 41 for ( int i = 0; i < 62; i++ ) 42 t[index].clu[i] = t[index<<1].clu[i] + t[index<<1|1].clu[i]; 43 } 44 45 void build( int l, int r, int index ) 46 { 47 t[index].lhs = l; t[index].rhs = r; 48 if( l == r ) 49 { t[index].size = 1; t[index].clu[getI(str[l-1])] = 1; return; } 50 int mid = (l+r)>>1; 51 build(l, mid, index<<1); 52 build(mid+1, r, index<<1|1); 53 pushUp(index); 54 } 55 56 int find( int index, int x ) 57 { 58 int l = t[index].lhs, r = t[index].rhs; 59 if( l == r ) return l; 60 if( t[index<<1].size >= x ) return find( index<<1, x ); 61 else return find( index<<1|1, x-t[index<<1].size ); 62 } 63 64 void change( int index, int l, int r, int x ) 65 { 66 int L = t[index].lhs, R = t[index].rhs; 67 if ( r < L || l > R ) return; 68 if ( !t[index].clu[x] ) return; 69 if ( L == R ) { t[index].size--; t[index].clu[x]--; return; } 70 change( index<<1, l, r, x ); 71 change( index<<1|1, l, r, x ); 72 t[index].size = t[index<<1].size + t[index<<1|1].size; 73 t[index].clu[x] = t[index<<1].clu[x] + t[index<<1|1].clu[x]; 74 } 75 76 void print( int i ) 77 { 78 int L=t[i].lhs,R=t[i].rhs; 79 if ( L==R ) 80 { 81 for ( int j = 0; j < 62; j++ ) 82 if ( t[i].clu[j] ) printf("%c",getC(j)); 83 return; 84 } 85 print(i<<1); 86 print(i<<1|1); 87 88 } 89 90 int main() 91 { 92 int len, q; 93 cin >> len >> q; 94 scanf("%s", str); 95 build(1, len, 1); 96 97 int x, y; 98 char c; 99 for ( int i = 1; i <= q; i++ ) 100 { 101 scanf( "%d %d %c", &x, &y, &c ); 102 int l = find( 1, x ); 103 int r = find( 1, y ); 104 change( 1, l, r, getI(c) ); 105 } 106 print(1); 107 printf(" "); 108 return 0; 109 }