1.前言
在Linux中,伙伴系统(buddy system)是以页为单位管理和分配内存。但是现实的需求却以字节为单位,假如我们需要申请20Bytes,总不能分配一页吧!那岂不是严重浪费内存。那么该如何分配呢?slab分配器就应运而生了,专为小内存分配而生。slab分配器分配内存以Byte为单位。但是slab分配器并没有脱离伙伴系统,而是基于伙伴系统分配的大内存进一步细分成小内存分配。
前段时间学习了下slab分配器工作原理。因为自己本身是做手机的,发现现在好像都在使用slub分配器,想想还是再研究一下slub的工作原理。之前看了代码,感觉挺多数据结构和成员的。成员的意思是什么?数据结构之间的关系是什么?不知道你是否感觉云里雾里。既然代码阅读起来晦涩难懂,如果有精美的配图,不知是否有助于阁下理解slub的来龙去脉呢?我想表达的意思就是文章图多,图多,图多。我们只说原理,尽量不看代码。因为所有代码中包含的内容我都会用图来说明。你感兴趣绝对有助于你看代码。
说明:slub是slab中的一种,slab也是slab中的一种。有时候用slab来统称slab, slub和slob。slab, slub和slob仅仅是分配内存策略不同。本篇文章中说的是slub分配器工作的原理。但是针对分配器管理的内存,下文统称为slab缓存池。所以文章中slub和slab会混用,表示同一个意思。
注:文章代码分析基于linux-4.15.0-rc3。 图片有点走形,请单独点开图片查看。
2. slub数据结构
slub的数据结构相对于slab来说要简单很多。并且对外接口和slab兼容。所以说,从slab的系统更换到slub,可以说是易如反掌。
2.1. kmem_cache
现在假如从伙伴系统分配一页内存供slub分配器管理。对于slub分配器来说,就是将这段连续内存平均分成若干大小相等的object(对象)进行管理。可是我们总得知道每一个object的size吧!管理的内存页数也是需要知道的吧!不然怎么知道如何分配呢!因此需要一个数据结构管理。那就是struct kmem_cache。kmem_cache数据结构描述如下:
struct kmem_cache { struct kmem_cache_cpu __percpu *cpu_slab; /* Used for retriving partial slabs etc */ slab_flags_t flags; unsigned long min_partial; int size; /* The size of an object including meta data */ int object_size; /* The size of an object without meta data */ int offset; /* Free pointer offset. */ #ifdef CONFIG_SLUB_CPU_PARTIAL int cpu_partial; /* Number of per cpu partial objects to keep around */ #endif struct kmem_cache_order_objects oo; /* Allocation and freeing of slabs */ struct kmem_cache_order_objects max; struct kmem_cache_order_objects min; gfp_t allocflags; /* gfp flags to use on each alloc */ int refcount; /* Refcount for slab cache destroy */ void (*ctor)(void *); int inuse; /* Offset to metadata */ int align; /* Alignment */ int reserved; /* Reserved bytes at the end of slabs */ const char *name; /* Name (only for display!) */ struct list_head list; /* List of slab caches */ struct kmem_cache_node *node[MAX_NUMNODES]; };
1) cpu_slab:一个per cpu变量,对于每个cpu来说,相当于一个本地内存缓存池。当分配内存的时候优先从本地cpu分配内存以保证cache的命中率。
2) flags:object分配掩码,例如经常使用的SLAB_HWCACHE_ALIGN标志位,代表创建的kmem_cache管理的object按照硬件cache 对齐,一切都是为了速度。
3) min_partial:限制struct kmem_cache_node中的partial链表slab的数量。虽说是mini_partial,但是代码的本意告诉我这个变量是kmem_cache_node中partial链表最大slab数量,如果大于这个mini_partial的值,那么多余的slab就会被释放。
4) size:分配的object size
5) object_size:实际的object size,就是创建kmem_cache时候传递进来的参数。和size的关系就是,size是各种地址对齐之后的大小。因此,size要大于等于object_size。
6) offset:slub分配在管理object的时候采用的方法是:既然每个object在没有分配之前不在乎每个object中存储的内容,那么完全可以在每个object中存储下一个object内存首地址,就形成了一个单链表。很巧妙的设计。那么这个地址数据存储在object什么位置呢?offset就是存储下个object地址数据相对于这个object首地址的偏移。
7) cpu_partial:per cpu partial中所有slab的free object的数量的最大值,超过这个值就会将所有的slab转移到kmem_cache_node的partial链表。
8) oo:低16位代表一个slab中所有object的数量(oo & ((1 << 16) - 1)),高16位代表一个slab管理的page数量((2^(oo 16)) pages)。
9) max:看了代码好像就是等于oo。
10) min:当按照oo大小分配内存的时候出现内存不足就会考虑min大小方式分配。min只需要可以容纳一个object即可。
11) allocflags:从伙伴系统分配内存掩码。
12) inuse:object_size按照word对齐之后的大小。
13) align:字节对齐大小。
14) name:sysfs文件系统显示使用。
15) list:系统有一个slab_caches链表,所有的slab都会挂入此链表。
16) node:slab节点。在NUMA系统中,每个node都有一个struct kmem_cache_node数据结构。
2.2. kmem_cache_cpu
struct kmem_cache_cpu是对本地内存缓存池的描述,每一个cpu对应一个结构体。其数据结构如下:
struct kmem_cache_cpu { void **freelist; /* Pointer to next available object */ unsigned long tid; /* Globally unique transaction id */ struct page *page; /* The slab from which we are allocating */ #ifdef CONFIG_SLUB_CPU_PARTIAL struct page *partial; /* Partially allocated frozen slabs */ #endif };
1) freelist:指向下一个可用的object。
2) tid:一个神奇的数字,主要用来同步作用的。
3) page:slab内存的page指针。
4) partial:本地slab partial链表。主要是一些部分使用object的slab。
2.3. kmem_cache_node
slab节点使用struct kmem_cache_node结构体描述。对于slub分配器来说,成员很少,远比slab分配器简洁。
struct kmem_cache_node { spinlock_t list_lock; unsigned long nr_partial; struct list_head partial; };
1) list_lock:自旋锁,保护数据。
2) nr_partial:slab节点中slab的数量。
3) partial:slab节点的slab partial链表,和struct kmem_cache_cpu的partial链表功能类似。
2.4. slub接口
了解了基本的数据结构,再来看看slub提供的API。如果你了解slub,我想这几个接口你是再熟悉不过了。
struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)); void kmem_cache_destroy(struct kmem_cache *); void *kmem_cache_alloc(struct kmem_cache *cachep, int flags); void kmem_cache_free(struct kmem_cache *cachep, void *objp);
1) kmem_cache_create是创建kmem_cache数据结构,参数描述如下:
name:kmem_cache的名称
size :slab管理对象的大小
align:slab分配器分配内存的对齐字节数(以align字节对齐)
flags:分配内存掩码
ctor :分配对象的构造回调函数
2) kmem_cache_destroy作用和kmem_cache_create相反,就是销毁创建的kmem_cache。
3) kmem_cache_alloc是从cachep参数指定的kmem_cache管理的内存缓存池中分配一个对象,其中flags是分配掩码,GFP_KERNEL是不是很熟悉的掩码?
4) kmem_cache_free是kmem_cache_alloc的反操作
slab分配器提供的接口该如何使用呢?其实很简单,总结分成以下几个步骤:
1) kmem_cache_create创建一个kmem_cache数据结构。
2) 使用kmem_cache_alloc接口分配内存,kmem_cache_free接口释放内存。
3) release第一步创建的kmem_cache数据结构。
再来一段demo示例代码就更好了。
/* * This is a demo for how to use kmem_cache_create */ void slab_demo(void) { struct kmem_cache *kmem_cache_16 = kmem_cache_create("kmem_cache_16", 16, 8, ARCH_KMALLOC_FLAGS, NULL); /* now you can alloc memory, the buf points to 16 bytes of memory*/ char *buf = kmeme_cache_alloc(kmem_cache_16, GFP_KERNEL); /* * do something what you what, don't forget to release the memory after use */ kmem_cache_free(kmem_cache_16, buf); kmem_cache_destroy(kmem_cache_16); }
1) 首先使用kmem_cache_create创建名称为kmem_cache_16的kmem_cache,该kmem_cache主要是描述如何管理一堆对象,其实就是slab的布局。每个对象都是16字节,并且分配的对象地址按照8字节对齐,也就是说从kmem_cache_16中分配的对象大小全是16字节。不管你要申请多少,反正就是16Bytes。当然,kmem_cache_create仅仅是创建了一个描述slab缓存池布局的数据结构,并没有从伙伴系统申请内存,具体的申请内存操作是在kmeme_cache_alloc中完成的。
2) kmeme_cache_alloc从kmem_cache_16分配一个对象。
3) 内存使用结束记得kmem_cache_free释放。
4) 如果不需要这个kmem_cache的话,就可以调用kmem_cache_destroy进行销毁吧。在释放kmem_cache之前要保证从该kmem_cache中分配的对象全部释放了,否则无法释放kmem_cache。
3. slub数据结构之间关系
什么是slab缓存池呢?我的解释是使用struct kmem_cache结构描述的一段内存就称作一个slab缓存池。一个slab缓存池就像是一箱牛奶,一箱牛奶中有很多瓶牛奶,每瓶牛奶就是一个object。分配内存的时候,就相当于从牛奶箱中拿一瓶。总有拿完的一天。当箱子空的时候,你就需要去超市再买一箱回来。超市就相当于partial链表,超市存储着很多箱牛奶。如果超市也卖完了,自然就要从厂家进货,然后出售给你。厂家就相当于伙伴系统。
说了这么多终于要抛出辛辛苦苦画的美图了。
好了,后面说的大部分内容请看这张图。足以表明数据结构之间的关系了。看懂了这张图,就可以理清数据结构之间的关系了。
3.1. slub管理object方法
在图片的左上角就是一个slub缓存池中object的分布以及数据结构和kmem_cache之间的关系。首先一个slab缓存池包含的页数是由oo决定的。oo拆分为两部分,低16位代表一个slab缓存池中object的数量,高16位代表包含的页数。使用kmem_cache_create()接口创建kmem_cache的时候需要指出obj的size和对齐align。也就是传入的参数。kmem_cache_create()主要是就是填充kmem_cache结构体成员。既然从伙伴系统得到(2^(oo >> 16)) pages大小内存,按照size大小进行平分。一般来说都不会整除,因此剩下的就是图中灰色所示。由于每一个object的大小至少8字节,当然可以用来存储下一个object的首地址。就像图中所示的,形成单链表。图中所示下个obj地址存放的位置位于每个obj首地址处,在内核中称作指针内置式。同时,下个obj地址存放的位置和obj首地址之间的偏移存储在kmem_cache的offset成员。两外一种方式是指针外置式,即下个obj的首地址存储的位置位于obj尾部,也就是在obj尾部再分配sizeof(void *)字节大小的内存。对于外置式则offset就等于kmem_cache的inuse成员。
3.2. per cpu freelist
针对每一个cpu都会分配一个struct kmem_cacche_cpu的结构体。可以称作是本地缓存池。当内存申请的时候,优先从本地cpu缓存池申请。在分配初期,本地缓存池为空,自然要从伙伴系统分配一定页数的内存。内核会为每一个物理页帧创建一个struct page的结构体。kmem_cacche_cpu中page就会指向正在使用的slab的页帧。freelist成员指向第一个可用内存obj首地址。处于正在使用的slab的struct page结构体中的freelist会置成NULL,因为没有其他地方使用。struct page结构体中inuse代表已经使用的obj数量。这地方有个很有意思的地方,在刚从伙伴系统分配的slab的 inuse在分配初期就置成obj的总数,在分配obj的时候并不会改变。你是不是觉得很奇怪,既然表示已经使用obj的数量,为什么一直是obj的总数呢?你想想,slab中的对象总有分配完的时候,那个时候就直接脱离kmem_cache_cpu了。此时的inuse不就名副其实了嘛!对于full slab就像图的右下角,就像无人看管的孩子,没有任何链表来管理。
3.3. per cpu partial
当图中右下角full slab释放obj的时候,首先就会将slab挂入per cpu partial链表管理。通过struct page中next成员形成单链表。per cpu partial链表指向的第一个page中会存放一些特殊的数据。例如:pobjects存储着per cpu partial链表中所有slab可供分配obj的总数,如图所示。当然还有一个图中没有体现的pages成员存储per cpu partial链表中所有slab内存的页数。pobjects到底有什么用呢?我们从full slab中释放一个obj就添加到per cpu partial链表,总不能无限制的添加吧!因此,每次添加的时候都会判断当前的pobjects是否大于kmem_cache的cpu_partial成员,如果大于,那么就会将此时per cpu partial链表中所有的slab移送到kmem_cache_node的partial链表,然后再将刚刚释放obj的slab插入到per cpu partial链表。如果不大于,则更新pobjects和pages成员,并将slab插入到per cpu partial链表。
3.4. per node partial
per node partia链表类似per cpu partial,区别是node中的slab是所有cpu共享的,而per cpu是每个cpu独占的。假如现在的slab布局如上图所示。假如现在如红色箭头指向的obj将会释放,那么就是一个empty slab,此时判断kmem_cache_node的nr_partial是否大于kmem_cache的min_partial,如果大于则会释放该slab的内存。
4. slub分配内存原理
当调用kmem_cache_alloc()分配内存的时候,我们可以从正在使用slab分配,也可以从per cpu partial分配,同样还可以从per node partial分配,那么分配的顺序是什么呢?我们可以用下图表示。
首先从cpu 本地缓存池分配,如果freelist不存在,就会转向per cpu partial分配,如果per cpu partial也没有可用对象,继续查看per node partial,如果很不幸也不没有可用对象的话,就只能从伙伴系统分配一个slab了,并挂入per cpu freelist。我们详细看一下这几种情况。
1) kmem_cache刚刚建立,还没有任何对象可供分配,此时只能从伙伴系统分配一个slab,如下图所示。
2) 如果正在使用的slab有free obj,那么就直接分配即可,这种是最简单快捷的。如下图所示。
3) 随着正在使用的slab中obj的一个个分配出去,最终会无obj可分配,此时per cpu partial链表中有可用slab用于分配,那么就会从per cpu partial链表中取下一个slab用于分配obj。如下图所示。
4) 随着正在使用的slab中obj的一个个分配出去,最终会无obj可分配,此时per cpu partial链表也为空,此时发现per node partial链表中有可用slab用于分配,那么就会从per node partial链表中取下一个slab用于分配obj。如下图所示。
5. slub释放内存原理
我们可以通过kmem_cache_free()接口释放申请的obj对象。释放对象的流程如下图所示。
如果释放的obj就是属于正在使用cpu上的slab,那么直接释放即可,非常简单;如果不是的话,首先判断所属slub是不是full状态,因为full slab是没妈的孩子,释放之后就变成partial empty,急需要找个链表领养啊!这个妈就是per cpu partial链表。如果per cpu partial链表管理的所有slab的free object数量超过kmem_cache的cpu_partial成员的话,就需要将per cpu partial链表管理的所有slab移动到per node partial链表管理;如果不是full slab的话,继续判断释放当前obj后的slab是否是empty slab,如果是empty slab,那么在满足kmem_cache_node的nr_partial大于kmem_cache的min_partial的情况下,则会释放该slab的内存。其他情况就直接释放即可。
1) 假设下图左边的情况下释放obj,如果满足kmem_cache_node的nr_partial大于kmem_cache的min_partial的话,释放情况如下图所示。
2) 假设下图左边的情况下释放obj,如果不满足kmem_cache_node的nr_partial大于kmem_cache的min_partial的话,释放情况如下图所示。
3) 假设下图从full slab释放obj的话,如果满足per cpu partial管理的所有slab的free object数量大于kmem_cache的cpu_partial成员的话的话,将per cpu partial链表管理的所有slab移动到per node partial链表管理,释放情况如下图所示。
4) 假设下图从full slab释放obj的话,如果不满足per cpu partial管理的所有slab的free object数量大于kmem_cache的cpu_partial成员的话的话,释放情况如下图所示。
6. kmalloc
好了,说了这么多,估计你会感觉slab好像跟我们没什么关系。如果作为一个驱动开发者,是不是感觉自己写的driver从来没有使用过这些接口呢?其实我们经常使用,只不过隐藏在kmalloc的面具之下。
kmalloc的内存分配就是基于slab分配器,在系统启动初期调用create_kmalloc_caches ()创建多个管理不同大小对象的kmem_cache,例如:8B、16B、32B、64B、…、64MB等大小。当然默认配置情况下,系统系统启动之后创建的最大size的kmem_cache是kmalloc-8192。因此,通过slab接口分配的最大内存是8192 bytes。那么通过kmalloc接口申请的内存大于8192 bytes该怎么办呢?其实kmalloc会判断申请的内存是否大于8192 bytes,如果大于的话就会通过alloc_pages接口申请内存。kmem_cache的名称以及大小使用struct kmalloc_info_struct管理。所有管理不同大小对象的kmem_cache的名称如下:
const struct kmalloc_info_struct kmalloc_info[] __initconst = { {NULL, 0}, {"kmalloc-96", 96}, {"kmalloc-192", 192}, {"kmalloc-8", 8}, {"kmalloc-16", 16}, {"kmalloc-32", 32}, {"kmalloc-64", 64}, {"kmalloc-128", 128}, {"kmalloc-256", 256}, {"kmalloc-512", 512}, {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, {"kmalloc-67108864", 67108864} };
经过create_kmalloc_caches ()函数之后,系统通过create_kmalloc_cache()创建以上不同size的kmem_cache,并将这些kmem_cache存储在kmalloc_caches全局变量中以备后续kmalloc分配内存。现在假如通过kmalloc(17, GFP_KERNEL)申请内存,系统会从名称“kmalloc-32”管理的slab缓存池中分配一个对象。即使浪费了15Byte。
我们来看看kmalloc的实现方式。
static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); if (!(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace(kmalloc_caches[index], flags, size); } } return __kmalloc(size, flags); }
1) __builtin_constant_p是gcc工具用来判断参数是否是一个常数,毕竟有些操作对于常数来说是可以优化的。
2) 通过kmalloc_index函数查找符合满足分配大小的最小kmem_cache。
3) 将index作为下表从kmalloc_caches数组中找到符合的kmem_cache,并从slab缓存池中分配对象。
我们再看一下kmalloc_index的实现。
static __always_inline int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; /* Will never be reached. Needed because the compiler may complain */ return -1; }
转自: www.wowotech.net