zoukankan      html  css  js  c++  java
  • RSA算法解析

      RSA是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

      它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。 

    一、RSA算法 : 

      首先, 找出三个数, p, q, r, 其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数…… p, q, r 这三个数便是 private key 

      接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)….. 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了….. 再来, 计算 n = pq……. m, n 这两个数便是 public key 

      编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t), 则每一位数均小於 n, 然後分段编码…… 接下来, 计算 b == a^m mod n, (0 <= b < n), b 就是编码後的资料…… 

      解码的过程是, 计算 c == b^r mod pq (0 <= c < pq), 於是乎, 解码完毕…… 等会会证明 c 和 a 其实是相等的 

      如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b…… 他如果要解码的话, 必须想办法得到 r……所以, 他必须先对 n 作质因数分解……… 要防止他分解, 最有效的方法是找两个非常的大质数 p, q, 使第三者作因数分解时发生困难……… 

    <定理> 
    若 p, q 是相异质数, rm == 1 mod (p-1)(q-1), a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq, 则 c == a mod pq 

      证明的过程, 会用到费马小定理, 叙述如下: 
    m 是任一质数, n 是任一整数, 则 n^m == n mod m (换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m) 运用一些基本的群论的知识, 就可以很容易地证出费马小定理的…….. 

    <证明> 
    因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数 因为在 modulo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 

    1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时, 
    则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p 
    a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q 
    所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 
    即 a^(k(p-1)(q-1)) == 1 mod pq 
    => c == a^(k(p-1)(q-1)+1) == a mod pq 

    2. 如果 a 是 p 的倍数, 但不是 q 的倍数时, 
    则 a^(q-1) == 1 mod q (费马小定理) 
    => a^(k(p-1)(q-1)) == 1 mod q 
    => c == a^(k(p-1)(q-1)+1) == a mod q 
    => q | c - a 
    因 p | a 
    => c == a^(k(p-1)(q-1)+1) == 0 mod p 
    => p | c - a 
    所以, pq | c - a => c == a mod pq 

    3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上 

    4. 如果 a 同时是 p 和 q 的倍数时, 
    则 pq | a 
    => c == a^(k(p-1)(q-1)+1) == 0 mod pq 
    => pq | c - a 
    => c == a mod pq 
    Q.E.D. 

      这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)…. 但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n, 所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能….. 

    二、RSA 的安全性 

      RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。 

    三、RSA的速度 

      由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。 

    四、RSA的选择密文攻击 

      RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构: 

    ( XM )^d = X^d *M^d mod n 

      前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征–每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。 

    五、RSA的公共模数攻击 

      若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则: 

    C1 = P^e1 mod n 

    C2 = P^e2 mod n 

    密码分析者知道n、e1、e2、C1和C2,就能得到P。 

    因为e1和e2互质,故用Euclidean算法能找到r和s,满足: 

    r * e1 + s * e2 = 1 

    假设r为负数,需再用Euclidean算法计算C1^(-1),则 

    ( C1^(-1) )^(-r) * C2^s = P mod n 

      另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。 

      RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。 

      RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

    【扫描关注更多干货】

    公众号:xiaoniu

  • 相关阅读:
    零散的小知识0
    windows 安装touch指令
    sba
    jQuery中mouseenter vs mouseover 以及 mouseleave vs mouseout
    SSAS: Pareto Analysis
    SSAS: Display measures in Rows
    SSAS: Using DMV Queries to get Cube Metadata
    Do not execute sub-report when it's hidden in SSRS
    Read data from Excel XML file
    Concatenating Row Values in Transact-SQL
  • 原文地址:https://www.cnblogs.com/chars/p/4983537.html
Copyright © 2011-2022 走看看