zoukankan      html  css  js  c++  java
  • 1.2 Sampling From Non-standard Distribution

    1.2.1 Inverse transform sampling(ITS) with discrete variables

    This method generates random numbers from any probability distribution given the inverse of its cumulative distribution function. The idea is to sample uniformly distributed random numbers (between 0 and 1) and then transform these values using the inverse cumulative distribution function(InvCDF)(which can be descret or continous). If the InvCDF is descrete, then the ITS method just requires a table lookup, like shown in Table 1.  

    Table 1. Probability of digits observed in human random digit generation experiment

    There is a method called randsample in Matlab that can implement the sampling process using the Table 1. See the code below. 

    %Note: The randsample doesn't defaultly exist in Octave-core package, install statistic package from http://octave.sourceforge.net/statistics/ before using randsample.
    
    % probabilities for each digit
    theta=[0.000; ... % digit 0
    0.100; ... % digit 1
    0.090; ... % digit 2
    0.095; ... % digit 3
    0.200; ... % digit 4
    0.175; ... % digit 5
    0.190; ... % digit 6
    0.050; ... % digit 7
    0.100; ... % digit 8
    0.000];
    
    seed = 1; rand( 'state' , seed );% fix the random number generator
    K = 10000;% let's say we draw K random values
    digitset = 0:9;
    Y = randsample(digitset,K,true,theta);
    figure( 1 ); clf;
    counts = hist( Y , digitset );
    bar( digitset , counts , 'k' );
    xlim([-0.5 9.5]);
    xlabel( 'Digit' );
    ylabel( 'Frequency' );
    title( 'Distribution of simulated draws of human digit generator' );
    pause;

    Instead of using the built-in functions such as randsample or mnrnd, it is helpful to consider how to implement the underlying sampling algorithm using the inverse transform method which is:

    (1) Calculate $F(X)$. 

    (2) Sample u from Uniform(0,1).

    (3) Get a sample $x^{i}$ of $P(X)$, which is $F(u)^{-1}$.

    (4) Repeat (2) and (3) until we get enough samples.

    Note: For discrete distributions, $F(X)^{-1}$ is discrete, the way to get a sample $x^{i}$ is illustrated below where $u=0.8,~x^{i}=6$ .

    1.2.2 Inverse transform sampling with continuous variables

    This can be done with the following procedure:

    (1) Draw U ∼ Uniform(0, 1).

    (2) Set $X=F(U)^{-1}$

    (3) Repeat

    For example, we want to sample random numbers from the exponential distribution where  its CDF is F (x|λ) = 1 − exp(−x/λ) . Then $F(u|gamma)^{-1}=-log(1-u)gamma$. Therefore replace $F(U)^{-1}$ with $F(u|gamma)^{-1}$.

    1.2.3 Rejection sampling 

    Applied situation: impossible/difficult to compute CDF of $P(X)$.

    Advantage: unlike MCMC, it doesn't require of any “burn-in” period, i.e., all samples obtained during sampling can immediately be used as samples from the target distribution $p( heta)$.

    Based on the Figure above, the method is:

    (1) Choose a density q(θ) that is easy to sample from.

    (2) Find a constant c such that cq(θ) ≥ p(θ) for all θ.

    (3) Sample a proposal θ from proposal distribution q(θ).

    (4) Sample a u from Uniform[0, cq(θ)].

    (5) Reject the proposal if u > p(θ), accept otherwise. Actually, since u is sampled from Uniform[0, cq(θ)], it is equal to state like this " Reject if $uin[p( heta),cq( heta)]$, accept otherwise".

    (6) Repeat steps 3, 4, and 5 until desired number of samples is reached; each accepted sample $ heta$ is a draw from p(θ).

  • 相关阅读:
    idea设置docker远程插件
    Linux安装nfs共享文件
    类文件注释规约
    标准pcm数据(正弦波、方波、三角波)解读
    dB分贝计算
    Ion内存的带cahce与不带cache问题分享
    c++智能指针介绍_补充
    c++智能指针介绍
    wav封装格式
    开博啦。。。
  • 原文地址:https://www.cnblogs.com/chaseblack/p/5218789.html
Copyright © 2011-2022 走看看