zoukankan      html  css  js  c++  java
  • 1.2 Sampling From Non-standard Distribution

    1.2.1 Inverse transform sampling(ITS) with discrete variables

    This method generates random numbers from any probability distribution given the inverse of its cumulative distribution function. The idea is to sample uniformly distributed random numbers (between 0 and 1) and then transform these values using the inverse cumulative distribution function(InvCDF)(which can be descret or continous). If the InvCDF is descrete, then the ITS method just requires a table lookup, like shown in Table 1.  

    Table 1. Probability of digits observed in human random digit generation experiment

    There is a method called randsample in Matlab that can implement the sampling process using the Table 1. See the code below. 

    %Note: The randsample doesn't defaultly exist in Octave-core package, install statistic package from http://octave.sourceforge.net/statistics/ before using randsample.
    
    % probabilities for each digit
    theta=[0.000; ... % digit 0
    0.100; ... % digit 1
    0.090; ... % digit 2
    0.095; ... % digit 3
    0.200; ... % digit 4
    0.175; ... % digit 5
    0.190; ... % digit 6
    0.050; ... % digit 7
    0.100; ... % digit 8
    0.000];
    
    seed = 1; rand( 'state' , seed );% fix the random number generator
    K = 10000;% let's say we draw K random values
    digitset = 0:9;
    Y = randsample(digitset,K,true,theta);
    figure( 1 ); clf;
    counts = hist( Y , digitset );
    bar( digitset , counts , 'k' );
    xlim([-0.5 9.5]);
    xlabel( 'Digit' );
    ylabel( 'Frequency' );
    title( 'Distribution of simulated draws of human digit generator' );
    pause;

    Instead of using the built-in functions such as randsample or mnrnd, it is helpful to consider how to implement the underlying sampling algorithm using the inverse transform method which is:

    (1) Calculate $F(X)$. 

    (2) Sample u from Uniform(0,1).

    (3) Get a sample $x^{i}$ of $P(X)$, which is $F(u)^{-1}$.

    (4) Repeat (2) and (3) until we get enough samples.

    Note: For discrete distributions, $F(X)^{-1}$ is discrete, the way to get a sample $x^{i}$ is illustrated below where $u=0.8,~x^{i}=6$ .

    1.2.2 Inverse transform sampling with continuous variables

    This can be done with the following procedure:

    (1) Draw U ∼ Uniform(0, 1).

    (2) Set $X=F(U)^{-1}$

    (3) Repeat

    For example, we want to sample random numbers from the exponential distribution where  its CDF is F (x|λ) = 1 − exp(−x/λ) . Then $F(u|gamma)^{-1}=-log(1-u)gamma$. Therefore replace $F(U)^{-1}$ with $F(u|gamma)^{-1}$.

    1.2.3 Rejection sampling 

    Applied situation: impossible/difficult to compute CDF of $P(X)$.

    Advantage: unlike MCMC, it doesn't require of any “burn-in” period, i.e., all samples obtained during sampling can immediately be used as samples from the target distribution $p( heta)$.

    Based on the Figure above, the method is:

    (1) Choose a density q(θ) that is easy to sample from.

    (2) Find a constant c such that cq(θ) ≥ p(θ) for all θ.

    (3) Sample a proposal θ from proposal distribution q(θ).

    (4) Sample a u from Uniform[0, cq(θ)].

    (5) Reject the proposal if u > p(θ), accept otherwise. Actually, since u is sampled from Uniform[0, cq(θ)], it is equal to state like this " Reject if $uin[p( heta),cq( heta)]$, accept otherwise".

    (6) Repeat steps 3, 4, and 5 until desired number of samples is reached; each accepted sample $ heta$ is a draw from p(θ).

  • 相关阅读:
    测试用例设计之正交实验法
    Jmeter 添加性能监控器
    jmeter常用的性能测试监听器
    常用的性能测试策略
    nmon定位性能问题之数据库问题定位
    性能测试基础知识
    Electorn(桌面应用)自动化测试之Java+selenium实战例子
    Mybatis查询为空,但是数据库中有结果集!
    Spring中使用Mybatis逆向工程(IDEA版)
    Spring配置Quartz的三种方式
  • 原文地址:https://www.cnblogs.com/chaseblack/p/5218789.html
Copyright © 2011-2022 走看看