Nowcodercontest5278 L动物森友会(网络流)
只有7天,是不是可以直接贪心啊。。。
网络流做法:
二分答案天数为\(mid\)
建图:
源点向\(Day1-Day7\)连边,第\(i\)天的流量上限是\((\lfloor \frac{mid}{7} \rfloor +[mid \mod 7 \ge i]) \cdot e\)
对于所有\(a_{i,j}\)让,\(Day_{a_{i,j}}\)向\(Task_i\)连上限为\(\infin\)的边
每个\(Task_i\)向汇点连容量为\(c_i\)
二分\(mid\)之后,判断是否满流\(=\sum c_i\)即可
const int N=2e3+10,M=7*N,INF=1e9+10;
int n,m,S,T,vc;
//以下是网络流模板
struct Edge{
int to,nxt,w;
}e[M<<1];
int head[N],ecnt;
void AddEdge(int u,int v,int w) {
e[ecnt]=(Edge){v,head[u],w};
head[u]=ecnt++;
}
void Link(int u,int v,int w){ AddEdge(u,v,w),AddEdge(v,u,0); }
#define erep(u,i) for(int i=head[u];~i;i=e[i].nxt)
int dis[N];
int Bfs(){
static queue <int> que;
rep(i,1,vc) dis[i]=INF;
que.push(S),dis[S]=0;
while(!que.empty()) {
int u=que.front(); que.pop();
erep(u,i) {
int v=e[i].to,w=e[i].w;
if(!w || dis[v]<=dis[u]+1) continue;
dis[v]=dis[u]+1,que.push(v);
}
}
return dis[T]<INF;
}
int Dfs(int u,int flowin) {
if(u==T) return flowin;
int flowout=0;
erep(u,i) {
int v=e[i].to,w=e[i].w;
if(dis[v]!=dis[u]+1 || !w) continue;
int t=Dfs(v,min(flowin-flowout,w));
flowout+=t,e[i].w-=t,e[i^1].w+=t;
if(flowin==flowout) break;
}
if(!flowout) dis[u]=0;
return flowout;
}
int Dinic(){
int ans=0;
while(Bfs()) ans+=Dfs(S,INF);
return ans;
}
int a[N][8],c[N],sum;
int Check(int mid) {
if(m*mid<sum) return 0;
rep(i,1,n+10) head[i]=-1; ecnt=vc=0;
S=++vc,T=++vc;
rep(i,1,7) Link(S,++vc,(mid/7+(mid%7>=i))*m);
rep(i,1,n) {
vc++;
Link(vc,T,c[i]);
rep(j,1,7) if(a[i][j]) Link(j+2,vc,INF);
}
return Dinic()==sum;
}
int main(){
n=rd(),m=rd();
rep(i,1,n) {
c[i]=rd(),sum+=c[i];
rep(j,1,rd()) a[i][rd()]=1;
}
// 二分答案,注意上界设定,防止边权爆int
int l=0,r=1e9/m,res;
while(l<=r) {
int mid=(l+r)>>1;
if(Check(mid)) r=mid-1,res=mid;
else l=mid+1;
}
printf("%d\n",res);
}