zoukankan      html  css  js  c++  java
  • [HDU-6848] Expectation (2020多校7T5) (dp)

    [HDU-6848] Expectation (2020多校7T5) (dp)

    比赛时疯狂脑抽写了3个小时祭

    考虑计算每条(x_i ightarrow x_{i+1})的边被在所有情况下被经过的次数总和

    (dp[i][j])为有(i)个球时,(x_j ightarrow x_{j+1})这段被经过的次数总和((jleq 2i))

    考虑转移,对于(dp[i]),枚举每个球向左或者右走,发现把两边的部分拉拢过来后,合并形成一条包含了原先(3)条边的新边,变成了(i-1)阶的子问题

    画图理解,发现(j)这条边,在(i-1)阶的子问题上对应的编号只可能是(j,j-1,j-2)

    视选择了(j)这条边为将边一端的球滚进另一端的洞里

    那么对于任意一条编号为(j)的边

    (j)变为编号为(j-2)的情况为选择了编号([1,j-1])范围内的边

    (j)变为编号为(j-1)的情况为选择了编号为(j)的边

    (j)变为编号为(j)的情况为选择了编号为([j+1,2i])的边

    对于(j)在子问题中被访问的次数可以直接(O(1))继承过来

    同时,考虑当第一次就选了(j)时,后面的操作随意,即加上((i-1)!cdot 2^{i-1})

    于是得到一个(O(n^2))(dp)预处理

    而对于每个询问,求解(n)阶的答案复杂度为(O(n))

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define rep(i,a,b) for(int i=a,i##end=b;i<=i##end;++i)
    
    char IO;
    template <class T=int> T rd(){
        T s=0; int f=0;
        while(!isdigit(IO=getchar())) if(IO=='-') f=1;
        do s=(s<<1)+(s<<3)+(IO^'0');
        while(isdigit(IO=getchar()));
        return f?-s:s;
    }
    
    const int N=3010,P=998244353;
    
    int n;
    int dp[N][N*2],Fac[N];
    ll qpow(ll x,ll k=P-2) {
        ll res=1;
        for(;k;k>>=1,x=x*x%P) if(k&1) res=res*x%P;
        return res;
    }
    
    int main(){
        rep(i,Fac[0]=1,N-1) Fac[i]=1ll*i*Fac[i-1]%P;
        dp[1][1]=dp[1][2]=1;
        int t=1;
        rep(i,2,N-1) {
            t=1ll*t*(i-1)*2%P;
            rep(j,1,i*2) {
                dp[i][j]=(1ll*(i*2-j)*dp[i-1][j]+1ll*dp[i-1][j-1]+1ll*(j-1)*(j>=2?dp[i-1][j-2]:0)+t)%P;
            }
        }
    
        rep(kase,1,rd()) {
            n=rd();
            int ans=0,x=rd();
            rep(i,1,n*2) {
                int y=rd();
                ans=(ans+1ll*(y-x)*dp[n][i])%P;
                x=y;
            }
            ans=ans*qpow((P+1)/2,n)%P*qpow(Fac[n])%P;
            printf("%d
    ",ans);
        }
    }
    
    
  • 相关阅读:
    [恢]hdu 1548
    [恢]hdu 2102
    [恢]hdu 1238
    [恢]hdu 2564
    [恢]hdu 2565
    关于mmu,bootloader,dta以及各种乱七八糟
    总有那些让人XX的词语
    VS2005+SQL2005 Reporting Service动态绑定报表(Web)
    (已测试)在本地处理模式下将数据库数据源与 ReportViewer Web 服务器控件一起使用
    如何在单台计算机上安装 Reporting Services
  • 原文地址:https://www.cnblogs.com/chasedeath/p/13485548.html
Copyright © 2011-2022 走看看