之前我的图论一直都是DFS一下,BFS一下,求个欧拉回路,拓扑排个序这种渣渣水平。
终于鼓起勇气拾起白书第五章的东西。
学(bei)习(song)了一下求双连通分量,二分图的判定,强连通分量,2-SAT。
DFS加上时间戳这个东西,很强大。
最后刷了白书上的例题:
BCC:
LA3523
可以参加会议的是双联通分量上的奇圈
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <vector> 5 #include <stack> 6 using namespace std; 7 8 struct Edge 9 { 10 int u, v; 11 Edge(int u, int v):u(u), v(v) {} 12 }; 13 14 const int maxn = 1000 + 10; 15 int n, m; 16 17 bool A[maxn][maxn]; 18 vector<int> G[maxn]; 19 20 void init() 21 { 22 for(int i = 0; i < n; i++) G[i].clear(); 23 memset(A, false, sizeof(A)); 24 } 25 26 int pre[maxn], bccno[maxn], dfs_clock, bcc_cnt; 27 bool iscut[maxn]; 28 vector<int> bcc[maxn]; 29 stack<Edge> S; 30 31 int dfs(int u, int fa) 32 { 33 int lowu = pre[u] = ++dfs_clock; 34 int child = 0; 35 for(int i = 0; i < G[u].size(); i++) 36 { 37 int v = G[u][i]; 38 Edge e = Edge(u, v); 39 if(!pre[v]) 40 { 41 S.push(e); 42 child++; 43 int lowv = dfs(v, u); 44 lowu = min(lowu, lowv); 45 if(lowv >= pre[u]) 46 { 47 iscut[u] = true; 48 bcc_cnt++; bcc[bcc_cnt].clear(); 49 for(;;) 50 { 51 Edge x = S.top(); S.pop(); 52 if(bccno[x.u] != bcc_cnt) { bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt; } 53 if(bccno[x.v] != bcc_cnt) { bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt; } 54 if(x.u == u && x.v == v) break; 55 } 56 } 57 } 58 else if(pre[v] < pre[u] && v != fa) 59 { 60 S.push(e); 61 lowu = min(lowu, pre[v]); 62 } 63 } 64 65 if(fa < 0 && child == 1) iscut[u] = false; 66 return lowu; 67 } 68 69 void find_bcc() 70 { 71 memset(pre, 0, sizeof(pre)); 72 memset(iscut, false, sizeof(iscut)); 73 memset(bccno, 0, sizeof(bccno)); 74 dfs_clock = bcc_cnt = 0; 75 76 for(int i = 0; i < n; i++) 77 if(!pre[i]) dfs(i, -1); 78 } 79 80 int color[maxn]; 81 bool odd[maxn]; 82 83 bool bipartite(int u, int b) 84 { 85 for(int i = 0; i < G[u].size(); i++) 86 { 87 int v = G[u][i]; if(bccno[v] != b) continue; 88 if(color[u] == color[v]) return false; 89 else if(!color[v]) 90 { 91 color[v] = 3 - color[u]; 92 if(!bipartite(v, b)) return false; 93 } 94 } 95 96 return true; 97 } 98 99 int main() 100 { 101 while(scanf("%d%d", &n, &m) == 2 && n) 102 { 103 init(); 104 105 while(m--) 106 { 107 int u, v; 108 scanf("%d%d", &u, &v); u--; v--; 109 A[u][v] = A[v][u] = true; 110 } 111 112 for(int u = 0; u < n; u++) 113 for(int v = u + 1; v < n; v++) 114 if(!A[u][v]) { G[u].push_back(v); G[v].push_back(u); } 115 116 find_bcc(); 117 118 memset(odd, false, sizeof(odd)); 119 for(int i = 1; i <= bcc_cnt; i++) 120 { 121 memset(color, 0, sizeof(color)); 122 for(int j = 0; j < bcc[i].size(); j++) 123 bccno[bcc[i][j]] = i; 124 int u = bcc[i][0]; 125 color[u] = 1; 126 if(!bipartite(u, i)) 127 for(int j = 0; j < bcc[i].size(); j++) 128 odd[bcc[i][j]] = true; 129 } 130 131 int ans = 0; 132 for(int i = 0; i < n; i++) if(!odd[i]) ans++; 133 printf("%d ", ans); 134 } 135 136 return 0; 137 }
LA 5135
统计只有一个割顶的双联通分量非割顶的顶点的个数的乘积
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <stack> 5 #include <vector> 6 #include <map> 7 using namespace std; 8 9 struct Edge 10 { 11 int u, v; 12 Edge(int u, int v):u(u), v(v) {} 13 }; 14 15 const int maxn = 100000 + 10; 16 17 int n; 18 19 int pre[maxn], bccno[maxn], dfs_clock, bcc_cnt; 20 bool iscut[maxn]; 21 vector<int> G[maxn], bcc[maxn]; 22 stack<Edge> S; 23 24 int dfs(int u, int fa) 25 { 26 int lowu = pre[u] = ++dfs_clock; 27 int child = 0; 28 for(int i = 0; i < G[u].size(); i++) 29 { 30 int v = G[u][i]; 31 Edge e = (Edge) { u, v }; 32 if(!pre[v]) 33 { 34 S.push(e); 35 child++; 36 int lowv = dfs(v, u); 37 lowu = min(lowv, lowu); 38 if(lowv >= pre[u]) 39 { 40 iscut[u] = true; 41 bcc_cnt++; bcc[bcc_cnt].clear(); 42 for(;;) 43 { 44 Edge x = S.top(); S.pop(); 45 if(bccno[x.u] != bcc_cnt) { bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt; } 46 if(bccno[x.v] != bcc_cnt) { bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt; } 47 if(x.u == u && x.v == v) break; 48 } 49 } 50 } 51 else if(pre[v] < pre[u] && v != fa) 52 { 53 S.push(e); 54 lowu = min(lowu, pre[v]); 55 } 56 } 57 if(fa < 0 && child == 1) iscut[u] = false; 58 return lowu; 59 } 60 61 int tot; 62 map<int, int> id; 63 int ID(int x) { if(!id.count(x)) id[x] = tot++; return id[x]; } 64 65 void init() 66 { 67 memset(pre, 0, sizeof(pre)); 68 memset(iscut, false, sizeof(iscut)); 69 memset(bccno, 0, sizeof(bccno)); 70 for(int i = 0; i < n*2; i++) G[i].clear(); 71 tot = dfs_clock = bcc_cnt = 0; 72 id.clear(); 73 } 74 75 int main() 76 { 77 int kase = 0; 78 while(scanf("%d", &n) == 1 && n) 79 { 80 init(); 81 82 while(n--) 83 { 84 int u, v; scanf("%d%d", &u, &v); 85 G[u].push_back(v); 86 G[v].push_back(u); 87 } 88 dfs(1, -1); 89 90 long long ans1 = 0, ans2 = 1; 91 for(int i = 1; i <= bcc_cnt; i++) 92 { 93 int cut_cnt = 0; 94 for(int j = 0; j < bcc[i].size(); j++) 95 if(iscut[bcc[i][j]]) cut_cnt++; 96 if(cut_cnt == 1) 97 { 98 ans1++; 99 ans2 *= (long long)(bcc[i].size() - 1); 100 } 101 } 102 if(bcc_cnt == 1) { ans1 = 2; ans2 = (long long)bcc[1].size() * (bcc[1].size() - 1) / 2; } 103 104 printf("Case %d: %lld %lld ", ++kase, ans1, ans2); 105 } 106 107 return 0; 108 }
SCC:
LA 4287
为了使原图整个强连通,添加的最少的边数为max{入读为0的顶点的个数, 出度为0的顶点的个数}
1 #include <cstdio> 2 #include <cstring> 3 #include <stack> 4 #include <vector> 5 #include <algorithm> 6 using namespace std; 7 8 const int maxn = 20000 + 10; 9 int n, m; 10 vector<int> G[maxn]; 11 12 int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt; 13 stack<int> S; 14 15 void dfs(int u) 16 { 17 pre[u] = lowlink[u] = ++dfs_clock; 18 S.push(u); 19 for(int i = 0; i < G[u].size(); i++) 20 { 21 int v = G[u][i]; 22 if(!pre[v]) 23 { 24 dfs(v); 25 lowlink[u] = min(lowlink[u], lowlink[v]); 26 } 27 else if(!sccno[v]) lowlink[u] = min(lowlink[u], pre[v]); 28 } 29 30 if(lowlink[u] == pre[u]) 31 { 32 scc_cnt++; 33 for(;;) 34 { 35 int x = S.top(); S.pop(); 36 sccno[x] = scc_cnt; 37 if(x == u) break; 38 } 39 } 40 } 41 42 void find_scc() 43 { 44 dfs_clock = scc_cnt = 0; 45 memset(pre, 0, sizeof(pre)); 46 memset(sccno, 0, sizeof(sccno)); 47 for(int i = 0; i < n; i++) 48 if(!pre[i]) dfs(i); 49 } 50 51 int in0[maxn], out0[maxn]; 52 53 int main() 54 { 55 int T; scanf("%d", &T); 56 while(T--) 57 { 58 scanf("%d%d", &n, &m); 59 for(int i = 0; i < n; i++) G[i].clear(); 60 while(m--) 61 { 62 int u, v; scanf("%d%d", &u, &v); 63 u--; v--; 64 G[u].push_back(v); 65 } 66 67 find_scc(); 68 69 if(scc_cnt == 1) { puts("0"); continue; } 70 71 for(int i = 1; i <= scc_cnt; i++) in0[i] = out0[i] = 1; 72 73 for(int u = 0; u < n; u++) 74 for(int i = 0; i < G[u].size(); i++) 75 { 76 int v = G[u][i]; 77 if(sccno[u] != sccno[v]) out0[sccno[u]] = in0[sccno[v]] = 0; 78 } 79 80 int a = 0, b = 0; 81 for(int i = 1; i <= scc_cnt; i++) 82 { 83 if(in0[i]) a++; 84 if(out0[i]) b++; 85 } 86 printf("%d ", max(a, b)); 87 } 88 89 return 0; 90 }
UVa 11324
对于每个SCC中的点,要么全选要么全不选。
求SCC通常是为了缩点,求完SCC后可以转化为一个DAG,然后用记忆化搜索求权值和最大的路径。
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <vector> 5 #include <stack> 6 using namespace std; 7 8 const int maxn = 1000 + 10; 9 int n, m; 10 11 vector<int> G[maxn]; 12 13 void init() 14 { 15 for(int i = 1; i <= n; i++) G[i].clear(); 16 } 17 18 int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt; 19 stack<int> S; 20 21 void dfs(int u) 22 { 23 pre[u] = lowlink[u] = ++dfs_clock; 24 S.push(u); 25 for(int i = 0; i < G[u].size(); i++) 26 { 27 int v = G[u][i]; 28 if(!pre[v]) 29 { 30 dfs(v); 31 lowlink[u] = min(lowlink[u], lowlink[v]); 32 } 33 else if(!sccno[v]) lowlink[u] = min(lowlink[u], pre[v]); 34 } 35 if(lowlink[u] == pre[u]) 36 { 37 scc_cnt++; 38 for(;;) 39 { 40 int x = S.top(); S.pop(); 41 sccno[x] = scc_cnt; 42 if(x == u) break; 43 } 44 } 45 } 46 47 void find_bcc() 48 { 49 dfs_clock = scc_cnt = 0; 50 memset(sccno, 0, sizeof(sccno)); 51 memset(pre, 0, sizeof(pre)); 52 for(int i = 1; i <= n; i++) 53 if(!pre[i]) dfs(i); 54 } 55 56 bool G2[maxn][maxn]; 57 int w[maxn]; 58 59 int d[maxn]; 60 61 int dp(int u) 62 { 63 if(d[u] >= 0) return d[u]; 64 int& ans = d[u]; 65 ans = w[u]; 66 for(int v = 1; v <= scc_cnt; v++) if(G2[u][v]) 67 ans = max(ans, dp(v) + w[u]); 68 return ans; 69 } 70 71 int main() 72 { 73 int T; scanf("%d", &T); 74 while(T--) 75 { 76 scanf("%d%d", &n, &m); 77 init(); 78 while(m--) 79 { 80 int u, v; scanf("%d%d", &u, &v); 81 G[u].push_back(v); 82 } 83 84 find_bcc(); 85 86 memset(G2, false, sizeof(G2)); 87 memset(w, 0, sizeof(w)); 88 for(int i = 1; i <= n; i++) 89 { 90 int u = sccno[i]; 91 w[u]++; 92 for(int j = 0; j < G[i].size(); j++) 93 { 94 int v = sccno[G[i][j]]; 95 if(u != v) G2[u][v] = true; 96 } 97 } 98 99 memset(d, -1, sizeof(d)); 100 int ans = 0; 101 for(int i = 1; i <= scc_cnt; i++) 102 ans = max(ans, dp(i)); 103 printf("%d ", ans); 104 } 105 106 return 0; 107 }
2-SAT
LA 3211
二分最小时间间隔T,枚举任意两个飞机早晚的起飞时间,如果时间间隔小于T的话则加一个句子,所以最多不超过n(n-1)/2个句子。
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <vector> 5 #include <cmath> 6 using namespace std; 7 8 const int maxn = 2000 + 10; 9 int T[maxn][2]; 10 11 int n; 12 13 vector<int> G[maxn * 2]; 14 bool mark[maxn * 2]; 15 int S[maxn * 2], top; 16 17 void init() 18 { 19 for(int i = 0; i < n * 2; i++) G[i].clear(); 20 memset(mark, false, sizeof(mark)); 21 } 22 23 void add_clause(int x, int xvalue, int y, int yvalue) 24 { 25 x = x * 2 + xvalue; 26 y = y * 2 + yvalue; 27 G[x^1].push_back(y); 28 G[y^1].push_back(x); 29 } 30 31 bool dfs(int u) 32 { 33 if(mark[u^1]) return false; 34 if(mark[u]) return true; 35 mark[u] = true; 36 S[++top] = u; 37 for(int i = 0; i < G[u].size(); i++) 38 { 39 int v = G[u][i]; 40 if(!dfs(v)) return false; 41 } 42 return true; 43 } 44 45 bool solve() 46 { 47 for(int i = 0; i < n*2; i += 2) 48 { 49 if(!mark[i] && !mark[i+1]) 50 { 51 top = -1; 52 if(!dfs(i)) 53 { 54 while(top >= 0) mark[S[top--]] = false; 55 if(!dfs(i + 1)) return false; 56 } 57 } 58 } 59 return true; 60 } 61 62 bool ok(int t) 63 { 64 init(); 65 for(int i = 0; i < n; i++) for(int a = 0; a < 2; a++) 66 for(int j = i + 1; j < n; j++) for(int b = 0; b < 2; b++) 67 if(abs(T[i][a] - T[j][b]) < t) add_clause(i, a^1, j, b^1); 68 return solve(); 69 } 70 71 int main() 72 { 73 //freopen("in.txt", "r", stdin); 74 75 while(scanf("%d", &n) == 1) 76 { 77 int L = 0, R = 0; 78 for(int i = 0; i < n; i++) 79 { 80 scanf("%d%d", &T[i][0], &T[i][1]); 81 R = max(R, T[i][0]); 82 R = max(R, T[i][1]); 83 } 84 85 while(L < R) 86 { 87 int mid = (L + R) / 2 + 1; 88 if(ok(mid)) L = mid; 89 else R = mid - 1; 90 } 91 printf("%d ", L); 92 } 93 94 return 0; 95 }