zoukankan      html  css  js  c++  java
  • P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT

    LINK:州区划分

    把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路.

    充要条件有两个 联通 每个点度数为偶数.

    预处理出所有状态.

    然后设(f_i)表示组成情况为i的值.

    枚举子集转移 可以发现利用FST进行优化.

    FST怎么做?详见另一篇文章史上最详细FST解释

    code
    //#include<bits/stdc++.h>
    #include<iostream>
    #include<cstdio>
    #include<ctime>
    #include<cctype>
    #include<queue>
    #include<deque>
    #include<stack>
    #include<iostream>
    #include<iomanip>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<ctime>
    #include<cmath>
    #include<cctype>
    #include<cstdlib>
    #include<queue>
    #include<deque>
    #include<stack>
    #include<vector>
    #include<algorithm>
    #include<utility>
    #include<bitset>
    #include<set>
    #include<map>
    #define ll long long
    #define db double
    #define INF 1000000000000000000ll
    #define inf 100000000000000000ll
    #define ldb long double
    #define pb push_back
    #define put_(x) printf("%d ",x);
    #define get(x) x=read()
    #define gt(x) scanf("%d",&x)
    #define gi(x) scanf("%lf",&x)
    #define put(x) printf("%d
    ",x)
    #define putl(x) printf("%lld
    ",x)
    #define rep(p,n,i) for(RE int i=p;i<=n;++i)
    #define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
    #define fep(n,p,i) for(RE int i=n;i>=p;--i)
    #define vep(p,n,i) for(RE int i=p;i<n;++i)
    #define pii pair<int,int>
    #define mk make_pair
    #define RE register
    #define P 1000000007ll
    #define gf(x) scanf("%lf",&x)
    #define pf(x) ((x)*(x))
    #define uint unsigned long long
    #define ui unsigned
    #define EPS 1e-10
    #define sq sqrt
    #define S second
    #define F first
    #define mod 998244353
    #define max(x,y) ((x)<(y)?y:x)
    using namespace std;
    char *fs,*ft,buf[1<<15];
    inline char gc()
    {
    	return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
    }
    inline int read()
    {
    	RE int x=0,f=1;RE char ch=gc();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
    	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
    	return x*f;
    }
    const int MAXN=1<<21,maxn=22;
    int n,m,p,maxx;
    int f[maxn][MAXN],c[MAXN],g[maxn][MAXN],w[MAXN],in[MAXN];
    int d[maxn],fa[maxn];
    struct wy
    {
    	int x,y;
    }t[MAXN];
    inline int getfather(int x){return x==fa[x]?x:fa[x]=getfather(fa[x]);}
    inline int ksm(int b,int p)
    {
    	int cnt=1;
    	while(p)
    	{
    		if(p&1)cnt=(ll)cnt*b%mod;
    		b=(ll)b*b%mod;p=p>>1;
    	}
    	return cnt;
    }
    inline void FWT(int *f,int op)
    {
    	for(int len=2;len<=maxx+1;len=len<<1)
    	{
    		int mid=len>>1;
    		for(int j=0;j<=maxx;j+=len)
    		{
    			vep(0,mid,i)
    			{
    				if(op==1)f[i+j+mid]=(f[i+j+mid]+f[i+j])%mod;
    				else f[i+j+mid]=(f[i+j+mid]-f[i+j]+mod)%mod;
    			}
    		}
    	}
    }
    inline int pd(int x)
    {
    	if(c[x]<=1)return 0;
    	int cnt=c[x];
    	rep(1,n,i)fa[i]=i,d[i]=0;
    	rep(1,m,i)
    	{
    		if(((1<<(t[i].x-1))&x)&&((1<<(t[i].y-1))&x))
    		{
    			d[t[i].x]^=1;d[t[i].y]^=1;
    			int xx=getfather(t[i].x);
    			int yy=getfather(t[i].y);
    			if(xx==yy)continue;
    			fa[xx]=yy;--cnt;
    		}
    	}
    	if(cnt!=1)return 1;
    	rep(1,n,i)if(d[i])return 1;
    	return 0;
    }
    int main()
    {
    	//freopen("1.in","r",stdin);
    	get(n);get(m);get(p);
    	rep(1,m,i)
    	{
    		int get(x),get(y);
    		t[i]=(wy){x,y};
    	}
    	rep(1,n,i)get(w[i]);
    	maxx=1<<n;--maxx;
    	rep(1,maxx,i)
    	{
    		int sum=0;c[i]=c[i>>1]+(i&1);
    		rep(1,n,j)if(i&(1<<(j-1)))sum+=w[j];
    		sum=ksm(sum,p);in[i]=ksm(sum,mod-2);
    		//cout<<pd(i)<<' '<<i<<endl;
    		//cout<<sum<<endl;
    		if(pd(i))g[c[i]][i]=sum;
    		//cout<<g[c[i]][i]<<endl;
    	}
    	rep(1,n,i)FWT(g[i],1);
    	f[0][0]=1;FWT(f[0],1);
    	rep(1,n,i)
    	{
    		vep(0,i,j)
    		rep(0,maxx,k)f[i][k]=(f[i][k]+(ll)f[j][k]*g[i-j][k])%mod;
    		FWT(f[i],-1);
    		rep(0,maxx,k)f[i][k]=(ll)f[i][k]*in[k]%mod;
    		FWT(f[i],1);
    	}
    	FWT(f[n],-1);
    	put(f[n][maxx]);
    	return 0;
    }
    
  • 相关阅读:
    随笔
    打破生活的套牢
    健忘是种美德
    【转贴】怎样冒充古典高手!
    php数组中删除元素
    JS 总结
    ubuntu apache rewrite
    JS 预览超级大图
    UBUNTU 安装SVN
    Yahoo14条前端优化规则
  • 原文地址:https://www.cnblogs.com/chdy/p/13389052.html
Copyright © 2011-2022 走看看