zoukankan      html  css  js  c++  java
  • 【NOIP2014模拟8.25】设备塔

    题目

    为了封印辉之环,古代塞姆利亚大陆的人民在异空间中建造了一座设备塔。
    简单的说,这座设备塔是一个漂浮在异空间中的圆柱体,圆柱体两头的圆是计算核心,而侧面则是
    传输信息所用的数据通道,划分成N *m 个区块。
    然而,随着工作的继续进行,他们希望把侧面的一部分区块也改造成其他模块。然而,任何时候都
    必须保证存在一条数据通道,能从圆柱体的一端通向另一端。
    由于无法使用辉之环掌控下的计算系统,他们寻求你的帮助来解决这个问题。他们将逐个输入想要
    改造的区域,而你则执行所有可行的改造并忽略可能导致数据中断的改造。

    分析

    圆柱体,所以左右两边相通。将这N*M个区块复制一个,并起来。
    发现,如有有两个区块都被改造了,那么当其中个区块是在另一个区块的八个方向相邻的话,数据就不能从之间通过。
    于是,我们搞个并查集,当改造一个区块时,如果在改造后,与之对应的被复制的区块,在并查集中有共同的父亲,那么这个区块就不合法,因为当区块和被复制的区块中可以通过区块相连,又因为每个区块都有对应的被复制的区块,显然整个圆柱体就一定被挡住了。

    如果这个区块合法,那么将它八个方向相邻的区块中被改造的都和他用并查集合在一起。

    有个小细节要就是当某个区块的八个方向相邻的区块中有列数小于1或大于2m的要处理一下。
    
    #include <cmath>
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    const int maxlongint=2147483647;
    const int mo=1000000007;
    const int N=3005;
    using namespace std;
    int k,n,m,fa[N*N*2],a[N][N*2],ans;
    int z[8][2]=
    {
    	{-1,0},
    	{0,-1},
    	{1,0},
    	{0,1},
    	{-1,1},
    	{1,-1},
    	{1,1},
    	{-1,-1}
    };
    int pos(int x,int y)
    {
    	return (x-1)*m*2+y;
    }
    int get(int x)
    {
    	if(fa[x]==x) return x;
    	fa[x]=get(fa[x]);
    	return fa[x];
    }
    int main()
    {
    	scanf("%d%d%d",&n,&m,&k);
    	for(int i=1;i<=n*m*2;i++) fa[i]=i;
    	for(k=k;k>=1;k--)
    	{
    		int x,y;
    		scanf("%d%d",&x,&y);
    		int xx=x,yy=y+m;
    		bool q=true;
    		for(int i=0;i<=7 && q;i++)
    			if(a[x+z[i][0]][(y+z[i][1]-1+2*m)%(2*m)+1])
    			{
    				int xf=get(pos(x+z[i][0],(y+z[i][1]-1+2*m)%(2*m)+1));
    				for(int j=0;j<=7 && q;j++)
    					if(a[xx+z[j][0]][(yy+z[j][1]-1+2*m)%(2*m)+1])
    					{
    						int yf=get(pos(xx+z[j][0],(yy+z[j][1]-1+2*m)%(2*m)+1));
    						if(xf==yf) q=false;
    					}
    			}
    		if(q)
    		{
    			a[x][y]=a[xx][yy]=1;
    			for(int i=0;i<=7;i++)
    				if(a[x+z[i][0]][(y+z[i][1]-1+2*m)%(2*m)+1])
    				{
    					int xf=get(pos(x+z[i][0],(y+z[i][1]-1+2*m)%(2*m)+1));
    					fa[xf]=pos(x,y);
    				}
    			for(int j=0;j<=7;j++)
    				if(a[xx+z[j][0]][(yy+z[j][1]-1+2*m)%(2*m)+1])
    				{
    					int yf=get(pos(xx+z[j][0],(yy+z[j][1]-1+2*m)%(2*m)+1));
    					fa[yf]=pos(xx,yy);
    				}
    			ans++;
    		}
    	}
    	cout<<ans<<endl;
    }
    
    
  • 相关阅读:
    以太坊编程简单介绍 ,Part-1
    以太坊可更新智能合约研究与开发综述
    为你的以太坊应用程序设计架构
    货币的未来取决于打破关于货币历史的虚构谎言
    JVM调优:GC 参数
    JVM调优:GC 参数
    Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法
    Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法
    Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法
    Lucene的FuzzyQuery中用到的Levenshtein Distance(LD)算法
  • 原文地址:https://www.cnblogs.com/chen1352/p/9071400.html
Copyright © 2011-2022 走看看