zoukankan      html  css  js  c++  java
  • YARN

    YARN

    YARN是什么?

    YARN是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

    如果没有YARN!

    1. 无法管理集群资源分配问题。
    2. 无法合理的给程序分配合理的资源。
    3. 不方便监控程序的运行状态及日志。

    1 YARN概念

    1.1 基本架构

    • ResourceManager
      • 整个集群只有一个,负责集群资源的统一管理和调度
      • 处理客户端请求,启动/监控ApplicationMaster
      • 监控NodeManager,汇总上报资源
      • 资源分配与调度
    • NodeManager
      • 整个集群有多个(每个从属节点一个)
      • 单个节点上的资源管理和任务管理
      • 监控资源使用情况(cpu,memory,disk,network)并向ResourceManager汇报
    • 基本思想衍进
      • 在MapReduce1.0中 JobTracker = 资源管理器 + 任务调度器
      • 拥有yarn后,将资源管理器,任务调度器做了切分
        • 资源管理
          • 让ResourceManager负责
        • 任务调度
          • 让ApplicationMaster负责
            • 每个作业启动一个
            • 根据作业切分任务的tasks
            • 向ResourceManager申请资源
            • 与NodeManager协作,将分配申请到的资源给内部任务tasks
            • 监控tasks运行情况,重启失败的任务
      • JobHistoryServer
        • 每个集群每种计算框架一个
        • 负责搜集归档所有的日志
      • Container
        • 计算资源抽象为Container
        • 任务运行资源(节点、内存、CPU)
        • 任务启动命令
        • 任务运行环境

    1.2 基本架构 YARN运行过程剖析

    1. 客户端发送请求,由Resource Manager分析需要多少内存资源。
    2. Resource Manager告诉Node Manager用什么样的jar包什么样的启动命令。
    3. Node Manager创建Container,在Container启动Application Master。
    4. Application  Master向Resource Manager发送ResourceRequest请求去Resource Manager申请资源
    5. 启动对应的Node Manager进行通信
    6. Node Manager找到对应的Container执行Task

    1.3 YARN容错性

    • 失败类型
      • 程序失败 进程崩溃 硬件问题
    • 如果作业失败了
      • 作业异常会汇报给Application Master
      • 通过心跳信号检查挂住的任务
      • 一个作业的任务失败比例超过配置,就会认为该任务失败
    • 如果Application Master失败了
      • Resource Manager接收不到心跳信号时会重启Application Master
    • 如果Node Manager失败了
      • Resource Manager接收不到心跳信号时会将其移出
      • Resource Manager接收Application Master,让Application Master决定任务如何处理
      • 如果某个Node Manager失败任务次数过多,Resource Manager调度任务时不再其上面运行任务
    • 如果Resource Manager运行失败
      • 通过checkpoint机制,定时将其状态保存到磁盘,失败的时候,重新运行
      • 通过Zooleeper同步状态和实现透明的HA

    1.4 YARN调度框架

    • 双层调度框架
      • RM将资源分配给AM
      • AM将资源进一步分配给各个Task
    • 基于资源预留的调度策略
      • 资源不够时,会为Task预留,直到资源充足
      • 与“all or nothing”策略不同(Apache Mesos)

    1.5 YARN资源调度算法

    • 集群资源调度器需要解决:

      • 多租户(Multi-tenancy):
        • 多用户同时提交多种应用程序
        • 资源调度器需要解决如何合理分配资源
      • 可扩展性:增加集群机器数量可以提高整体集群性能。
    • Yarn使用列队解决多租户中共享资源的问题

      • root

        |---prd

        |---dev

        ​ |---eng

        ​ |---science

    • 支持三种资源调度器(yarn.resourcemanager.scheduler.class)

      • FIFO

        • 所有向集群提交的作业使用一个列队
        • 根据提交作业的顺序来运行(先来先服务)
        • 优点:简单,可以按照作业优先级调度
        • 缺点:资源利用率不高,不允许抢占
      • Capacity Scheduler

        • 设计思想:资源按照比例分配给各个列队

        • 计算能力保证:以列队为单位划分资源,每个列队最低资源保证

        • 灵活:当某个列队空闲时,其资源可以分配给其他的列队使用

        • 支持优先级:单个列队内部使用的就是FIFO,支持作业优先级调度

        • 多租户:

          • 考虑多种因素防止单个作业,用户列队独占资源
          • 每个列队可以配置一定比例的最低资源配置和使用上限
          • 每个列队有严格的访问控制,只能向自己列队提交任务
        • 基于资源调度:支持内存资源调度和CPU资源的调度

        • 从2.8.0版本开始支持抢占

        • root

          |---prd 70%

          |---dev 30%

          ​ |---eng 50%

          ​ |---science 50%

      • Fair Scheduler(推荐)

        • 设计思想:资源公平分配
        • 具有与Capacity Scheduler相似的特点
          • 树状队列
          • 每个列队有独立的最小资源保证
          • 空闲时可以分配资源给其他列队使用
          • 支持内存资源调度和CPU资源调度
          • 支持抢占
        • 不同点
          • 核心调度策略不同
            • Capacity Scheduler优先选择资源利用率低的列队
            • 公平调度器考虑的是公平,公平体现在作业对资源的缺额
          • 单独设置列队间资源分配方式
            • FAIR(只考虑Mamory)
            • DRF(主资源公平调度,共同考虑CPU和Mamory)
          • 单独设置列队内部资源分配方式
            • FAIR DRF FIFO
    • 多类型资源调度
      • 采用DRF算法(论文:“Dominant Resource Fairness: Fair Allocation of
        Multiple Resource Types”)
      • 目前支持CPU和内存两种资源
    • 多租户资源调度器
      • 支持资源按比例分配
      • 支持层级队列划分方式
      • 支持资源抢占

    配置案例



    • 调用Wordcount案例,看看效果吧

    • hadoop jar /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop-mapreduce/hadoop-mapreduce-examples-3.0.0-cdh6.2.0.jar wordcount -Dmapreduce.job.queuename="root.default" /word.txt /output
      
      #任务2将会失败root.users is not a leaf queue,有了自列队就不能提交
      hadoop jar /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop-mapreduce/hadoop-mapreduce-examples-3.0.0-cdh6.2.0.jar wordcount -Dmapreduce.job.queuename="root.users" /word.txt /output1
      
      hadoop jar /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop-mapreduce/hadoop-mapreduce-examples-3.0.0-cdh6.2.0.jar wordcount -Dmapreduce.job.queuename="root.users.dev" /word.txt /output2
      
      hadoop jar /opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/hadoop-mapreduce/hadoop-mapreduce-examples-3.0.0-cdh6.2.0.jar wordcount -Dmapreduce.job.queuename="root.users.test" /word.txt /output3

    1.6 YARN资源隔离方案

    • 支持内存和CPU两种资源隔离
      • 内存是一种“决定生死”的资源
      • CPU是一种“影响快慢”的资源
    • 内存隔离
      • 基于线程监控的方案
      • 基于Cgroups的方案
    • CPU隔离
      • 默认不对CPU资源进行隔离
      • 基于Cgroups的方案

    1.7 YARN支持的调度语义

    • 支持的语义
      • 请求某个特定节点/机架上的特定资源量
      • 将某些节点加入(或移除)黑名单,不再为自己分配这些节点上的资源
      • 请求归还某些资源
    • 不支持的语义
      • 请求任意节点/机架上的特定资源量
      • 请求一组或几组符合某种特质的资源
      • 超细粒度资源
      • 动态调整Container资源

    1.8 YARN常用命令

    • 列出所有的Application: yarn application -list
    • 根据Application状态过滤: yarn application -list -appStates ACCEPTED
    • Kill掉Application: yarn application -kill [ApplicationId]
    • 查看Application日志: yarn logs -applicationId [ApplicationId]
    • 查询Container日志:yarn logs -applicationId [ApplicationId] -containerId [containerId] -nodeAddress [nodeAddress]
      • 配置是配置文件中:yarn.nodemanager.webapp.address参数指定

    2 Hadoop YARN应用

    2.1 应用程序种类繁多

    2.2 YARN设计目标

    • 通用的统一资源管理系统
      • 同时运行长应用程序和短应用程序
    • 长应用程序
      • 通常情况下,永不停止运行的程序
      • Service、HTTP Server等
    • 短应用程序
      • 短时间(秒级、分钟级、小时级)内会运行结束的程序
      • MR job、Spark Job等

    2.3 以YARN为核心的生态系统

    2.4 运行在YARN上的计算框架

    • 离线计算框架:MapReduce
    • DAG计算框架:Tez
    • 流式计算框架:Storm
    • 内存计算框架:Spark

    3 监控页面

    4 YARN HA

    从图中看出yarn的HA相对于HDFS的HA简单很多。原因是YARN在开发的过程中,HDFS才考虑到HA的应用(在出2.0版本),HDFS为了老代码的兼容性,和新代码的可拓展性加入了ZKFailoverController(ZKFC)来处理ZK相关的业务。而YARN就直接将ZK的相关的业务规划进了源架构中,所以架构图看起来比HDFS HA简单很多。

    4.1 CDH中YARN配置HA

    也很简单,一步完成。

  • 相关阅读:
    Hive与Hadoop的交互流程
    Hadoop Webhdfs
    Hadoop HDFS的Java操作
    Hadoop JobHistory
    使用Eclipse构建Maven项目环境搭建
    Shell脚本简介 — 持续更新
    Hadoop基础 — Hadoop Shell
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
  • 原文地址:https://www.cnblogs.com/chen8023miss/p/12510085.html
Copyright © 2011-2022 走看看