题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109331#problem/E
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
题意:给一个N*N的矩阵,里面的值不是0,就是1。初始时每一个格子的值为0。
现对该矩阵有两种操作:(共T次)
1.C x1 y1 x2 y2:将左下角为(x1, y1),右上角为(x2, y2)这个范围的子矩阵里的值全部取反。
2.Q x y:查询矩阵中第i行,第j列的值。
思路:1. 根据这个题目中介绍的这个矩阵中的数的特点不是 1 就是 0,这样我们只需记录每个格子改变过几次,即可判断这个格子的数字。
2. 先考虑一维的情况:
若要修改[x,y]区间的值,其实可以先只修改 x 和 y+1 这两个点的值(将这两个点的值加1)。查询k点的值时,其修改次数即为 sum(a[1] +a[2] +… + a[k])。
3. 二维的情况:
道理同一维。要修改范围[x1, y1, x2, y2],只需修改这四个点:(x1,y1), (x1,y2+1), (x2+1,y1), (x2+1,y2+1),并把这四个点(x,y)一路上溯,修改其值。
4. 而区间求和,便可用树状数组来实现。
二维树状数组基本知识 :如下所示

#include <iostream> #include <algorithm> #include <cstdlib> #include <cstdio> using namespace std; int a[1005][1005],n; int bit(int i) { ///i的末尾有k个0,即求2^k=i&(i^(i-1)); return i&(i^(i-1)); } void update(int i,int j) { ///更新a[i][j]的值,及其上方节点上的值; int jj; while(i<=n) { jj=j; while(jj<=n) { a[i][jj]++; jj=jj+bit(jj); } i=i+bit(i); } } int sum(int i,int j) { ///求和,求a[i][j]以前的所有子树根节点的和; int jj; int summ=0; while(i>0) { jj=j; while(jj>0) { summ+=a[i][jj]; jj=jj-bit(jj); } i=i-bit(i); } return summ; } int main() { int x,t,x1,y1,x2,y2; scanf("%d",&x); while(x--) { scanf("%d%d",&n,&t); char s[2]; for(int i=0;i<1005;i++) for(int j=0;j<1005;j++) a[i][j]=0; while(t--) { scanf("%s",s); if(s[0]=='C') { scanf(" %d %d %d %d",&x1,&y1,&x2,&y2); ///容斥原理; update(x2+1,y2+1); update(x2+1,y1); update(x1,y2+1); update(x1,y1); } if(s[0]=='Q') { scanf(" %d %d",&x1,&y1); printf("%d ",sum(x1,y1)&1); ///sum(x1,y1)即为(x1,y1)点的更新次数; } } puts(""); } return 0; }