zoukankan      html  css  js  c++  java
  • 技巧题---Single boy

    Description

    Today is Christmas day. There are n single boys standing in a line. They are numbered form 1 to n from left to right. The i-th single boy has ai single strength. They are singing single boy Christmas song! Single boy,single boy, single all the way, having party together and turning into gay! Hey! 
    A group of single boys is non-empty contiguous segment of the line. The size of a group is the number of single boys in that group. The single strength of a group is the minimum single strength of the single boy in that group.
    Now we want to know for each x such that 1<=x<=n the maximum single strength among all groups of size x.

    Input

    The first line of input contains T(<=30), the test cases.
    For each test case, the first line is a integer n(1 <= n <= 2*10^5), the number of single boys. 
    The second line contains n integers [1,10^9] separated by space, the single strength of each single boy.
    

    Output

    Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.

    Sample Input

    1
    10
    1 2 9 3 8 2 2 10 19 6

    Sample Output

    19 10 6 2 2 2 2 2 2 1

    题意:n个数,(1<=k<=n),在n个数中连续的k个数为一个区间长度,一共有n-k+1个区间,
    每个区间选出区间中的最小值min[j](1<=j<=n-k+1),然后在n-k+1个区间中选出最大的
    min[j],得到max[i](1<=i<=k),然后按k=1~n顺序输出max[i].
    由于数据太大,暴力模拟寻找太慢不能实现,所以我们想到的是求 以num[i]为最小值
    的区间长度,然后选择区间长度相等Max(num[i]),开始我用了暴力寻找区间,由于数据
    太大,TLE了,后来学习别人方法,用栈求得区间长度,我们把以num[i]为最小值的区间
    的左右边界求出来,右边界-左边界就是区间长度;
    用栈求区间左右边界:先求左边界后求右边界,开始将下标0入栈,我们的数组是从1
    开始的,然后比较以栈顶元素为下标的值是否大于等于当前值,是的话出栈,直到比当前
    值小,当前值的左边界就等于当前下标-栈顶元素+1,最后每次都要把当前下标入栈,
    求右边界完全一样。

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <stack>
    using namespace std;
    const int maxn=3000000;
    struct ac
    {
    int num;
    int l,r;
    }d[maxn];
    int ans[maxn];
    stack<int>sta;
    int main()
    {
    int t,n,Top,dn;
    scanf("%d",&t);
    while(t--)
    {
    int flag=0;
    scanf("%d",&n);
    d[0].num=0;///以0 ,n+1为下标的值为0.
    d[n+1].num=0;
    
    sta.push(0);///压入0下标
    for(int i=1; i<=n; i++)
    {
    scanf("%d",&d[i].num);
    while(!sta.empty())///求左边界
    {
    Top=sta.top();
    if(d[Top].num>=d[i].num)///比较当前值与以栈顶元素为下标的值
    sta.pop();
    else
    break;
    }
    Top=sta.top();
    d[i].l=Top+1;///左边界
    sta.push(i);///每次压入当前下标
    }
    while(!sta.empty())
    sta.pop();
    
    sta.push(n+1);///求右边界,压入下标n+1
    for(int i=n; i>=1; i--)
    {
    while(!sta.empty())
    {
    Top=sta.top();
    if(d[Top].num>=d[i].num)
    sta.pop();
    else
    break;
    }
    Top=sta.top();
    d[i].r=Top-1;
    sta.push(i);
    }
    while(!sta.empty())
    sta.pop();
    memset(ans,0,sizeof(ans));
    for(int i=1; i<=n; i++)///求ans,每次都更新 以区间长度为dn的最大值
    {
    dn=d[i].r-d[i].l+1;
    ans[dn]=max(ans[dn],d[i].num);
    }
    for(int i=n-1;i>=1;i--)///有些区间长度是找不到,那么用比他区间长度大的更新其值
    {
    if(ans[i]<ans[i+1])
    ans[i]=ans[i+1];
    }
    
    printf("%d",ans[1]);
    for(int i=2; i<=n; i++)
    printf(" %d",ans[i]);
    printf("
    ");
    }
    return 0;
    }

    样例值 1 2 9 3 8 2 2 10 19 6
    以该值为最
    小值的区间长度 10 9 1 3 1 9 9 2 1 3
    区间长度为 10有1 ,max[10]=1;
    区间长度为 9 有2,2,2,max[9]=2;
    区间长度为 4-8 都没有,即为0,那么以区间为长度为9的更新max[4-8]=2;
    区间长度为 3有 3,6, max[3]=6;
    区间长度为 2有 10, max[2]=10;
    区间长度为 1有 9,8,19,max[1]=19;
    为什么以区间更大的修改,以为区间越大,数值越小,区间小的的最大值不可能大于
    区间大的最大值

  • 相关阅读:
    为什么项目经理非常难有节操的选举
    二叉查找树的删除操作
    二叉查找树的前驱后继
    替罪羊树
    树链剖分
    DFS序
    bzoj3224: Tyvj 1728 普通平衡树(平衡树)
    splay树入门(带3个例题)
    红黑树
    AVL树
  • 原文地址:https://www.cnblogs.com/chen9510/p/5455881.html
Copyright © 2011-2022 走看看