zoukankan      html  css  js  c++  java
  • POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元)

    Description

    There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow. 

    Input

    The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a 'w' to express a white brick while a 'y' to express a yellow brick.

    Output

    For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can't paint all the bricks yellow, print 'inf'.

    Sample Input

    2
    3
    yyy
    yyy
    yyy
    5
    wwwww
    wwwww
    wwwww
    wwwww
    wwwww
    

    Sample Output

    0
    15
    

    Source

     
    代码如下:
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    const int maxn = 240;
    
    int equ,var;
    int a[maxn][maxn];
    int x[maxn]; // 解集.
    int pos[maxn];
    ///int free_num;
    
    void init_a()///对称阵;
    {
        memset(a,0,sizeof(a));
        for(int i=0;i<var*var;i++)
        {
            a[i][i]=1;
            int t=i%var;
            if(t>0) a[i][i-1]=1;
            if(t<var-1) a[i][i+1]=1;
            t=i/var;
            if(t>=1) a[i][i-var]=1;
            if(t<var-1) a[i][i+var]=1;
        }
    }
    
    int Gauss()
    {
        int i, j, k;
        int max_r; // 当前这列绝对值最大的行.
        int t=0;///记录自由元的个数;
        int col = 0; /// 当前处理的列.
    
        for (k = 0; k < equ*equ && col < var*var; k++, col++)
        {
            max_r = k;
            for (i = k + 1; i < equ*equ; i++)
            {
                if (a[i][col] > a[max_r][col])
                {
                    max_r=i;
                    break;
                }
            }
            if (max_r != k)
            {
                for (j = k; j < var*var + 1; j++) swap(a[k][j], a[max_r][j]);
            }
            if (a[k][col] == 0)
            {
                /// 说明该col列第k行以下全是0了,则处理当前行的下一列.
                ///并且应当记录这个自由元;
                k--;
                pos[t++]=col;
                continue;
            }
            for (i = k + 1; i < equ*equ; i++)
            {
                if (a[i][col] != 0)
                {
                    for (j = col; j < var*var + 1; j++)
                    {
                        a[i][j]^=a[k][j];
                    }
                }
            }
        }
        for (i = k; i < equ*equ; i++)
        {
            // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
            if (a[i][col] != 0) return -1;
        }
        return var*var - k;
    }
    
    int solve(int s)
    {
        int ans=9999999;
        int state=(1<<s);
        for(int i=0;i<state;i++)
        {
            int cnt=0;
            memset(x,0,sizeof(x));
            for(int j=0;j<s;j++)
            {
                if(i&(1<<j)) x[pos[j]]=1,cnt++;
            }
            for(int j=var*var-s-1;j>=0;j--)
            {
                int f=1;
                int ss;
                int tmp=a[j][var*var];
                for(int k=j;k<equ*equ;k++)
                {
                    if(a[j][k]&&f)
                    {
                        ss=k;
                        f=0;
                    }
                    if(a[j][k]) tmp^=x[k];
                }
                x[ss]=tmp;
               cnt+=x[ss];
            }
            ans=min(ans,cnt);
        }
        return ans;
    }
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&equ);
            var=equ;
            init_a();
            for(int i=0;i<var*var;i++)
            {
                char x;
                cin>>x;
                if(x=='y')
                    a[i][var*var]=0;
                else a[i][var*var]=1;
            }
            int v=Gauss();
            if(v==-1)  printf("inf
    ");
            else cout<<solve(v)<<endl;
        }
        return 0;
    }
  • 相关阅读:
    一文详解云上自动化部署集群管理工具 Nebula Operator
    手把手教你从数据预处理开始体验图数据库
    图查询语言的历史回顾短文
    集群通信:从心跳说起
    @Constraint 自定义注解校验手机号
    【工具】maven插件自动生成mapper文件
    【工具】方法日志打印+任务切片
    简单梳理下 Vue3 的新特性
    团队与领导力健康检查 | 体检表
    详细介绍Scrum Master八大职责(Scrum Master能力说明)
  • 原文地址:https://www.cnblogs.com/chen9510/p/5591881.html
Copyright © 2011-2022 走看看