zoukankan      html  css  js  c++  java
  • Python 手写数字识别-knn算法应用

      在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算。这里简述KNN算法的特点:

    优点:精度高,对异常值不敏感,无数据输入假定
    缺点:计算复杂度高,空间复杂度高
    适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序)

        knn算法代码:

    #-*- coding: utf-8 -*-
    from numpy import *
    import operator
    import time
    from os import listdir
    def classify(inputPoint,dataSet,labels,k): dataSetSize = dataSet.shape[0] #已知分类的数据集(训练集)的行数 #先tile函数将输入点拓展成与训练集相同维数的矩阵,再计算欧氏距离 diffMat = tile(inputPoint,(dataSetSize,1))-dataSet #样本与训练集的差值矩阵 sqDiffMat = diffMat ** 2 #差值矩阵平方 sqDistances = sqDiffMat.sum(axis=1) #计算每一行上元素的和 distances = sqDistances ** 0.5 #开方得到欧拉距离矩阵 sortedDistIndicies = distances.argsort() #按distances中元素进行升序排序后得到的对应下标的列表 #选择距离最小的k个点 classCount = {} for i in range(k): voteIlabel = labels[ sortedDistIndicies[i] ] classCount[voteIlabel] = classCount.get(voteIlabel,0)+1 #按classCount字典的第2个元素(即类别出现的次数)从大到小排序 sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) return sortedClassCount[0][0]

      下面介绍如何使用knn算法对手写识别数据进行分类,这里构造的分类系统只能识别数字0到9,数字经图形处理软件处理成具有相同的色彩和大小,宽高为32x32像素,为了便于处理,已将图像转换为文本格式,其效果图如下:

      数据集可在这里下载,解压后有两个目录,其中目录trainingDigits中包含了1934个例子,命名规则如 9_45.txt,表示该文件的分类是9,是数字9的第45个实例,每个数字大概有200个实例。testDigits目录中包含946个例子。使用trainingDigits中的数据作为训练集,使用testDigits中的数据作为测试集测试分类的效果。两组数据没有重叠。

      算法应用步骤如下:

      1. 数据准备:数字图像文本向量化,这里将32x32的二进制图像文本矩阵转换成1x1024的向量。循环读出文件的前32行,存储在向量中。

    #文本向量化 32x32 -> 1x1024
    def
    img2vector(filename): returnVect = [] fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect.append(int(lineStr[j])) return returnVect

      2. 构建训练数据集:利用目录trainingDigits中的文本数据构建训练集向量,以及对应的分类向量

    #从文件名中解析分类数字
    def classnumCut(fileName): 
       fileStr = fileName.split('.')[0]  
        classNumStr = int(fileStr.split('_')[0]) 
        return classNumStr
    #构建训练集数据向量,及对应分类标签向量
    def trainingDataSet():
        hwLabels = []
        trainingFileList = listdir('trainingDigits')           #获取目录内容
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))                          #m维向量的训练集
        for i in range(m):
            fileNameStr = trainingFileList[i]
            hwLabels.append(classnumCut(fileNameStr))
            trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
        return hwLabels,trainingMat

      3. 测试集数据测试:通过测试testDigits目录下的样本,来计算算法的准确率。

    #测试函数
    def handwritingTest():
        hwLabels,trainingMat = trainingDataSet()    #构建训练集
        testFileList = listdir('testDigits')        #获取测试集
        errorCount = 0.0                            #错误数
        mTest = len(testFileList)                   #测试集总样本数
        t1 = time.time()
        for i in range(mTest):
            fileNameStr = testFileList[i]
            classNumStr = classnumCut(fileNameStr)
            vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
         #调用knn算法进行测试
            classifierResult = classify(vectorUnderTest, trainingMat, hwLabels, 3)
            print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
            if (classifierResult != classNumStr): errorCount += 1.0
        print "
    the total number of tests is: %d" % mTest               #输出测试总样本数
        print "the total number of errors is: %d" % errorCount           #输出测试错误样本数
        print "the total error rate is: %f" % (errorCount/float(mTest))  #输出错误率
        t2 = time.time()
        print "Cost time: %.2fmin, %.4fs."%((t2-t1)//60,(t2-t1)%60)      #测试耗时
    
    if __name__ == "__main__":
        handwritingTest()

      运行结果如下:

      利用knn算法识别手写数字数据集,错误率为1.6%,算法的准确率还算可观。也可以通过改变变量k的值,观察错误率的变化,关于k值的选择,一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是一部分样本做训练集,一部分做测试集)来选择最优的K值。

      通过运行以上代码,我们会发现knn算法的执行效率并不高,因为算法需要为每个测试向量计算约2000次欧氏距离,每个距离计算包括1024个维度浮点运算,全部样本要执行900多次,可见算法实际耗时长,另外,knn算法必须保存全部数据集,每次需为测试向量准备2MB的存储空间(2个1024x1024矩阵的空间)。所以如何优化算法,减少存储空间和计算时间的开销,需要我们进一步深入学习。

    参考资料:

      《机器学习实战》

  • 相关阅读:
    SSAS 内部错误:操作未能成功
    无法从项目中获取SSIS包的列表
    新特技软件(Analyzer)添加新用户
    cmd命令搜集
    面试中--js注意事项(小知识点)
    面试的一般需求
    函数----let和const
    函数----箭头函数
    vuex的相关知识
    js中,数组去重的方法的总结(温故而知新)
  • 原文地址:https://www.cnblogs.com/chenbjin/p/3869745.html
Copyright © 2011-2022 走看看