zoukankan      html  css  js  c++  java
  • 【MutualNet 】2020-ECCV oral-MutualNet Adaptive ConvNet via Mutual Learning from Network Width and Resolution-论文阅读

    MutualNet

    2020-ECCV oral-MutualNet Adaptive ConvNet via Mutual Learning from Network Width and Resolution

    来源:ChenBong 博客园


    Introduction

    加入分辨率自适应的动态slim网络

    Motivation

    image-20210119155715506

    Contribution

    Method

    Framework

    image-20210119154543727

    Model Training

    image-20210119160158512

    有效性的一个解释

    image-20210119160440226

    image-20210119160545437

    image-20210119160606690

    Final model

    • Grid Search,query table

    image-20210119160333211

    image-20210119161030965

    Experiments

    ImageNet (compare with: US-Net)

    image-20210119160705084

    compare with: individual model+multi resolution

    image-20210119161720271

    Ablation Study

    compare with: US-Net + multi resolution

    • Grid Search,query table

    image-20210119161030965

    compare with: Multi-scale Data Augmentation

    MobileNet + Multi-scale data augmentation.

    image-20210119190037181

    In multi-scale data augmentation, the network may take images of different resolutions in different iterations. But within each iteration, the network weights are optimized in the same resolution direction.

    While our method randomly samples four sub-networks which share weights with each other.

    the weights are optimized in a mixed resolution direction in each iteration.

    US-Net + Multi-scale data augmentation

    image-20210119190402321

    we randomly choose a scale from {224, 192, 160, 128} and feed the same scaled image to all sub-networks in each iteration.

    the weights are still optimized towards a single resolution direction in each iteration, but the direction varies among different iterations.

    Effects of Width Lower Bound

    image-20210119190326937

    Boosting Single Network Performance

    As discussed above, the performance of the full-network is greatly improved as we increase the width lower bound.

    image-20210119191323104

    Conclusion

    Summary

    • 本质上就是在US-Net加了多个分辨率,并对不同规模的网络做了KD进行训练
    • 实验比较充分

    To Read

    Reference

  • 相关阅读:
    cnpm与npm指定有什么区别?
    Node.js与VUE安装及环境配置之Windows篇
    kafka和rabbitmq对比
    .NET笔记题库(一)
    API网关的用处
    C#问答题与附解收集(三)
    Error Code: 1175
    有时间测试dism
    sublime 3103liense
    weblogic 安装和部署项目(原创)
  • 原文地址:https://www.cnblogs.com/chenbong/p/14329399.html
Copyright © 2011-2022 走看看