题目链接
http://poj.org/problem?id=1258
题目大意:
农民约翰竞选为了这个小镇的市长,他竞选的时候承诺要把他所管辖区域的所有地方的网络连接起来。当然他需要你的帮助,约翰需要一个可以快速到达所有农民的联通网,为了降低成本他想要最少的光纤来来连接其他的农场。
给你一个表,代表从一个农场到达另一个农场所需要的光纤花费,你要找出将所有农场连接起来的最小花费。每个农场都要连接起来, 我从一个农场可以到达其他任何一个农场,这里农场之间的距离不会超过 100000.
输入:
输入包含多个测试实例, 第一个一个 N 代表有N 个城镇, 然后是个 N*N 的邻接矩阵,
输出:
输出最小生成树。
题目分析:
明显的是求一个最小生成树,因为下面给的就是邻接矩阵, 所以我们用邻接矩阵写是最好不过了, 直接 Prime+ 邻接矩阵搞定
#include <iostream> #include <cmath> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <vector> #include <queue> using namespace std; #define INF 0xfffffff #define maxn 103 struct Edge { int e, w; Edge(int e=0,int w=0) : e(e), w(w) {} }; int G[maxn][maxn]; bool vis[maxn]; int dist[maxn], n; int Prime() { int sum = 0; dist[0] = 0; for(int i=0; i<n; i++) { int Min = INF, index; for(int j=0; j<n; j++) { if(!vis[j] && Min > dist[j]) index = j, Min = dist[j]; } sum += Min; vis[index] = true; for(int j=0; j<n; j++) { if(!vis[j] && dist[j] > G[index][j]) { dist[j] = G[index][j]; } } } return sum; } void Init() { for(int i=0; i<n; i++) { vis[i] = false; dist[i] = INF; } } int main() { while(cin >> n) { Init(); for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { cin >> G[i][j]; } } int ans = Prime(); cout << ans <<endl; } return 0; }