Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
解题思路:由于n的范围太大,O(n^2)的枚举将超时,所以这个问题可以考虑归并排序(归并排序的时间复杂度为O(nlogn)。),因为设置的数字比较大,用int会溢出,用long long来存是最好的。还要注意两个关键条件,首先,只要有一个序列非空,就要继续合并,因此在比较时不能直接比较A[p]和A[q],因为可能其中一个序列非空,从而A[p]和A[q]代表的是一个实际不存在的元素。
程序代码:
#include <iostream>
#include<cstdio>
using namespace std;
const int maxn=500005;
int A[maxn],T[maxn];
long long count;
void merge_sort(int x,int y)
{
if(y-x>1)
{
int m=x+(y-x)/2;
int p=x,q=m,i=x;
merge_sort(x,m);
merge_sort(m,y);
while(p<m||q<y)
{
if(q>=y||(p<m&&A[p]<=A[q]))
T[i++]=A[p++];
else
{
T[i++]=A[q++];
count+=m-p;
}
}
for(i=x;i<y;i++)
A[i]=T[i];
}
}
int main()
{
int n;
while(scanf("%d",&n)==1&&n)
{
count=0;
for(int j=0;j<n;j++)
scanf("%d",&A[j]);
merge_sort(0,n);
printf("%I64d
",count);
}
return 0;
}