zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 21E selling souvenirs (dp)

    传送门

    题意

    给出n个体积为wi,价值为ci的物品,现在有一个m大的背包
    问如何装使得最后背包内的物品价值最大,输出价值

    分析

    一般的思路是01背包,但n*v不可做
    题解的思路

    We can iterate on the number of 3-elements we will take (in this editorial k-element is a souvenir with weight k). When fixing the number of 3-elements (let it be x), we want to know the best possible answer for the weight m - 3x, while taking into account only 1-elements and 2-elements.
    To answer these queries, we can precalculate the values dp[w] — triples (cost, cnt1, cnt2), where cost is the best possible answer for the weight w, and cnt1 and cnt2 is the number of 1-elements and 2-elements we are taking to get this answer. Of course, dp[0] = (0, 0, 0), and we can update dp[i + 1] and dp[i + 2] using value of dp[i]. After precalculating dp[w] for each possible w we can iterate on the number of 3-elements.

    这道题我还没有真正理解,留坑

    trick

    代码

    #include <cstdio>
    #include <iostream>
    #include <vector>
    #include <set>
    #include <map>
    #include <cmath>
    #include <string>
    #include <cstring>
    #include <sstream>
    #include <algorithm>
    using namespace std;
    
    typedef long long ll;
    
    const int Maxm = 300015;
    const int Maxw = 3;
    
    int n, m;
    ll best[Maxm];
    vector <int> seq[Maxw];
    
    ll Solve()
    {
    	int i = 0, j = 0;
    	ll cur = 0, w = 0;
    	ll res = best[m];
    	if (i < seq[0].size() && 1 <= m) res = max(res, seq[0][i] + best[m - 1]);
    	while (i + 2 <= seq[0].size() || j + 1 <= seq[1].size()) {
    		if (i + 2 <= seq[0].size() && (j + 1 > seq[1].size() || seq[0][i] + seq[0][i + 1] > seq[1][j])) {
    			cur += seq[0][i] + seq[0][i + 1]; w += 2; i += 2;
    		} else {
    			cur += seq[1][j]; w += 2; j++;
    		}
    		if (w <= m) res = max(res, cur + best[m - w]);
    		if (w + 1 <= m) {
    			if (i < seq[0].size()) res = max(res, cur + ll(seq[0][i]) + best[m - w - 1]);
    			if (i > 0 && j < seq[1].size()) res = max(res, cur + ll(seq[1][j]) - ll(seq[0][i - 1]) + best[m - w - 1]);
    		}
    	}
    	return res;
    }
    
    int main()
    {
    	scanf("%d %d", &n, &m);
    	for (int i = 0; i < n; i++) {
    		int w, c; scanf("%d %d", &w, &c);
    		seq[w - 1].push_back(c);
    	}
    	for (int i = 0; i < Maxw; i++)
    		sort(seq[i].rbegin(), seq[i].rend());
    	ll cur = 0;
    	for (int i = 0; i < seq[2].size(); i++) {
    		cur += seq[2][i];
    		best[3 * (i + 1)] = cur;
    	}
    	for (int i = 0; i + 1 <= m; i++)
    		best[i + 1] = max(best[i + 1], best[i]);
    	printf("%I64d
    ", Solve());
    	return 0;
    }
    
  • 相关阅读:
    DS博客作业06--图
    DS博客作业05--树
    DS博客作业04--树大作业说明
    DS博客作业02--栈和队列
    DS博客作业01--线性表
    DS博客作业01--日期抽象数据类型设计与实现
    C语言博客作业06--结构体&文件
    DEVC怎么建工程
    C语言博客05--指针
    201771010110孔维滢《面向对象程序设计(java)》第十二周学习总结
  • 原文地址:https://www.cnblogs.com/chendl111/p/6861377.html
Copyright © 2011-2022 走看看