zoukankan      html  css  js  c++  java
  • 寒假学习进度

    spark中wordcount的实现

    (1)//aggregateByKey
    def wordcount3(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
    val wordmap: RDD[(String, Int)] = wordRDD.map((_, 1))
    val group: RDD[(String, Int)] = wordmap.aggregateByKey(0)(_ + _,_ + _)

    group.collect().foreach(println)
    }

    //foldByKey
    def wordcount4(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
    val wordmap: RDD[(String, Int)] = wordRDD.map((_, 1))
    val group: RDD[(String, Int)] = wordmap.foldByKey(0)(_ + _)

    group.collect().foreach(println)
    }
    //combineByKey
    def wordcount5(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
    val wordmap: RDD[(String, Int)] = wordRDD.map((_, 1))
    val group: RDD[(String, Int)] = wordmap.combineByKey(
    v => v,
    (x: Int, y) => x + y,
    (x: Int, y: Int) => x + y
    )

    group.collect().foreach(println)
    }

    //countByKey
    def wordcount6(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
    val wordmap: RDD[(String, Int)] = wordRDD.map((_, 1))
    val group: collection.Map[String, Long] = wordmap.countByKey()
    println(group)


    }

    //countByValue
    def wordcount7(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )

    val group: collection.Map[String, Long] = wordRDD.countByValue()
    println(group)


    }

    //reduce
    def wordcount8(sc:SparkContext)={

    val fileRDD: RDD[String] = sc.textFile("D:\\qq text\\1791028291\\FileRecv\\《飘》英文版.txt")
    // 将文件中的数据进行分词
    val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
    val wordmap: RDD[mutable.Map[String, Long]] = wordRDD.map(
    word => {
    mutable.Map[String, Long]((word, 1))
    }
    )

    val stringToLong: mutable.Map[String, Long] = wordmap.reduce(
    (map1, map2) => {
    map2.foreach{
    case (word,count)=>{
    val newCount=map1.getOrElse(word,0L)+count
    map1.update(word,newCount)
    }
    }
    map1
    }
    )
    println(stringToLong)
    }

     

  • 相关阅读:
    POJ 3258 (NOIP2015 D2T1跳石头)
    POJ 3122 二分
    POJ 3104 二分
    POJ 1995 快速幂
    409. Longest Palindrome
    389. Find the Difference
    381. Insert Delete GetRandom O(1)
    380. Insert Delete GetRandom O(1)
    355. Design Twitter
    347. Top K Frequent Elements (sort map)
  • 原文地址:https://www.cnblogs.com/chenghaixiang/p/15795733.html
Copyright © 2011-2022 走看看