How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9359 Accepted Submission(s): 3285
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
Source
题目大意:给你一棵树,边的长度,求任意两点间的最短距离。
解题思路:直接套LCA模板就行了。LCA练手。
在线:
vset[]数组含义:dfs过程中记录经过的节点编号,其实下标可以看做是时间
dep[]数组含义:表示节点的在树中的深度
first[]数组含义:dfs过程中第一次到达节点的时间
#include<bits/stdc++.h> using namespace std; const int maxn=1e5; struct AdjEdge{ int to,w,next; }adjedges[maxn]; int head[maxn]; int dis[maxn],vset[maxn],dep[maxn],d[maxn][30],first[maxn]; int tot,nn; void init(){ tot=0; nn=0; memset(dep,0,sizeof(dep)); memset(head,-1,sizeof(head)); memset(dis,0,sizeof(dis)); memset(d,0,sizeof(d)); memset(first,0,sizeof(first)); } void addedge(int _u,int _v,int _w){ // adjedges[tot].to=_v; adjedges[tot].w=_w; adjedges[tot].next=head[_u]; head[_u]=tot++; adjedges[tot].to=_u; adjedges[tot].w=_w; adjedges[tot].next=head[_v]; head[_v]=tot++; } void dfs(int _u,int _fa,int _dep){ // printf("%d %d ",_u,_dep); dep[_u]=_dep; vset[++nn]=_u; first[_u]=nn; for(int i=head[_u];i!=-1;i=adjedges[i].next){ AdjEdge & e = adjedges[i]; if(e.to!=_fa){ dis[e.to]=dis[_u]+e.w; dfs(e.to,_u,_dep+1); vset[++nn]=_u; } } } void ST(){ for(int i=1;i<=nn;i++) d[i][0]=vset[i]; for(int j=1;(1<<j)<=nn;j++){ for(int i=1; i+(1<<j)-1<=nn ; i++){ if(dep[d[i][j-1]]<dep[d[i+(1<<(j-1))][j-1]]) d[i][j]=d[i][j-1]; else d[i][j]=d[i+(1 << (j-1))][j-1]; } } } int RMQ(int L,int R){ int k=0; while((1<<(k+1))<=R-L+1) k++; if(dep[d[L][k]]<=dep[d[R-(1<<k)+1][k]]) return d[L][k]; return d[R-(1<<k)+1][k]; } int main(){ int T,n,q; scanf("%d",&T); while(T--){ init(); int a,b,c; scanf("%d%d",&n,&q); for(int i=1;i<=n-1;i++){ scanf("%d%d%d",&a,&b,&c); addedge(a,b,c); } dfs(1,-1,1); ST(); for(int i=0;i<q;i++){ scanf("%d%d",&a,&b); if(first[a]<=first[b]){ int tmp1=RMQ(first[a],first[b]); printf("%d ",dis[a]+dis[b]-2*dis[tmp1]); }else{ int tmp1=RMQ(first[b],first[a]); printf("%d ",dis[a]+dis[b]-2*dis[tmp1]); } } } return 0; }