zoukankan      html  css  js  c++  java
  • POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 7102   Accepted: 3761

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Source

     
     
    题目大意:让你求一个生成树,树边的最大值跟最小值的差值最小。
     
    解题思路:其实就是kruskal求最小生成树。暴力枚举不同的最小边。
     
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<iostream>
    using namespace std;
    const int maxn = 110;
    const int maxe = 11010;
    struct Edge{
        int from,to,dist,idx;
        Edge(){}
        Edge(int _from,int _to,int _dist,int _idx):from(_from),to(_to),dist(_dist),idx(_idx){}
    }edges[maxe];
    struct Set{
        int pa,rela;
    }sets[maxn];
    int ans[maxn];
    bool cmp(Edge a,Edge b){
        return a.dist < b.dist;
    }
    void init(int n){
        for(int i = 0; i <= n; i++){
            sets[i].pa =  i;
        }
    }
    int Find(int x){
        if(x == sets[x].pa){
            return x;
        }
        int tmp = sets[x].pa;
        sets[x].pa = Find(tmp);
        return sets[x].pa;
    }
    int main(){
        int n, m;
        while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
            init(n);
            int a,b,c;
            for(int i = 0; i < m; i++){
                scanf("%d%d%d",&a,&b,&c);
                edges[i] = Edge(a,b,c,i);
            }
            sort(edges,edges+m,cmp);
            int pos = 0 , cnt = 0;
            for(int i = 0; i < m; i++){
                Edge & e = edges[i];
                int rootx, rooty;
                rootx = Find(e.from);
                rooty = Find(e.to);
                if(rootx == rooty){
                    continue;
                }
                cnt++;
                sets[rooty].pa = rootx;
                pos = i;
            }
            if(cnt != n - 1){
                puts("-1");
                continue;
            }
            int ans = edges[pos].dist - edges[0].dist;
            for(int j = 1; j <= m - n + 1; j++){
                cnt = 0;
                for(int i = 0; i <= n; i++){
                    sets[i].pa = i;
                }
                for(int i = j; i < m; i++){
                    Edge & e = edges[i];
                    int rootx, rooty;
                    rootx = Find(e.from);
                    rooty = Find(e.to);
                    if(rootx == rooty) {
                        continue;
                    }
                    sets[rooty].pa = rootx;
                    cnt++;
                    pos = i;
                }
                if(cnt < n-1){
                    break;
                }else{
                    int tmp = edges[pos].dist - edges[j].dist;
                    ans = min(ans,tmp);
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    第二十四篇 玩转数据结构——队列(Queue)
    第二十三篇 玩转数据结构——栈(Stack)
    第二十二篇 玩转数据结构——构建动态数组
    第二十一篇 Linux中的环境变量简单介绍
    第二十篇 Linux条件测试语句相关知识点介绍
    第十九篇 vim编辑器的使用技巧
    第十八篇 Linux环境下常用软件安装和使用指南
    第十六篇 nginx主配置文件参数解释
    RAID磁盘阵列是什么(一看就懂)
    如何删除顽固文件或文件夹?
  • 原文地址:https://www.cnblogs.com/chengsheng/p/4924456.html
Copyright © 2011-2022 走看看