zoukankan      html  css  js  c++  java
  • Whu 1603——Minimum Sum——————【单个元素贡献、滑窗】

    Problem 1603 - Minimum Sum
    Time Limit: 2000MS   Memory Limit: 65536KB   
    Total Submit: 623  Accepted: 178  Special Judge: No
    Description

    There are n numbers A[1] , A[2] .... A[n], you can select m numbers of it A[B[1]] , A[B[2]] ... A[B[m]]  ( 1 <= B[1] < B[2] .... B[m] <= n ) such that Sum as small as possible.

    Sum is sum of abs( A[B[i]]-A[B[j]] ) when 1 <= i < j <= m.

    Input
    There are multiple test cases.
    First line of each case contains two integers n and m.( 1 <= m <= n <= 100000 )
    Next line contains n integers A[1] , A[2] .... A[n].( 0 <= A[i] <= 100000 )
    It's guaranteed that the sum of n is not larger than 1000000.
    Output
    For each test case, output minimum Sum in a line.
    Sample Input
    4 2
    5 1 7 10
    5 3
    1 8 6 3 10
    Sample Output
    2
    8
     
    题目大意:让你从n个数中挑出m个,求这m个数中任意两个元素差的绝对值,然后求和。问你最小的绝对值和为多少。
     
    解题思路:首先可以确定的是,如果挑出的m个数越平稳,那么绝对值和最小。(当时没考虑到只要排序后,就是最平稳的了)所以问题转化成,如何求排序后的n个元素的序列中m个相连元素差的绝对值和最小。滑动窗口(计算机网络中的名词),当加入a[i]时,a[i-m]就要退出来,始终保证只有m个元素。那么只需要考虑加入和退出元素产生的贡献。
     
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    #include<vector>
    #include<iostream>
    using namespace std;
    const int maxn = 1e5+200;
    typedef long long LL;
    int a[maxn], sum[maxn];
    int main(){
        int n, m;
        while(scanf("%d%d",&n,&m)!=EOF){
            for(int i = 1; i <= n; i++){
                scanf("%d",&a[i]);
            }
            sort(a+1,a+1+n);
            for(int i = 1; i <= n; i++){
                sum[i] = sum[i-1]+a[i];
            }
            int ans = 0, tmp;
            for(int i = 2; i <= m; i++){
                ans += a[i]*(i-1) - (sum[i-1] - sum[0]);
            }
            tmp = ans;
            if(n == m){
                printf("%d
    ",ans); continue;
            }
            for(int i = m+1; i <= n; i++){
                tmp = tmp + a[i]*(m-1) - (sum[i-1] - sum[i-m]) - ((sum[i-1]-sum[i-m]) - a[i-m]*(m-1));
                ans = min(ans,tmp);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    分布式事务处理总结
    职业生涯的第一个三年
    Linux 启动SVN服务
    TensorFlow入门:安装常用的依赖模块
    TensorFlow入门:mac 安装 TensorFlow
    shiro 配置导图
    spring集成JPA的三种方法配置
    tomcat server 报错之 More than the maximum allowed number of cookies
    Jquery系列:checkbox 获取值、选中、设置值、事件监听等操作
    [转]Tomcat优化之内存、并发、缓存
  • 原文地址:https://www.cnblogs.com/chengsheng/p/5380261.html
Copyright © 2011-2022 走看看