zoukankan      html  css  js  c++  java
  • 《统计学习方法》:EM算法重点学习以及习题。

      适用场景:有隐变量的时候特别适用。

      EM算法主要分为两个步骤:E步和M步。

      输入:选择参数的初值theta,进行迭代。

      E步: 每次迭代改变初值。定义Q函数。Q函数为迭代的期望值。

      M步: 求使E步得到的Q函数最大的theta值。

      最后,重复进行E步和M步。直到最终theta值变化较小,即为收敛为止。

       注意:初值为算法的选择尤为重要。初值的选择会影响结果。

      EM算法得到的估计序列能够最终收敛得到结果。但是收敛得到的结果并不能保证能够收敛到全局最大值或者局部最大值。

      EM算法在两个方面极其有用:在高斯混合模型学习之中非常有用。

      EM算法可以解释F函数的极大-极大算法。广义期望极大算法(GEM)算法是基于这个解释的推广与应用。

      GEM算法有三种解法:见《统计学习方法》的P168,P169

  • 相关阅读:
    MongoDB学习笔记一—简介
    css之定位
    Docker私有仓库1
    Docker安装目录
    Docker 安装完启动服务报错
    Ambari安装组件出错
    Rancher安装使用
    Kettle中spoon.sh在使用时报错
    Kettle jdbc连接hive出现问题
    kettle在linux启动spoon.sh报错
  • 原文地址:https://www.cnblogs.com/chengxuyuanxiaowang/p/4454525.html
Copyright © 2011-2022 走看看