zoukankan      html  css  js  c++  java
  • 大厂也在用的 6种 数据脱敏方案,严防泄露数据的 “内鬼”

    本文收录在 GitHub 地址 https://github.com/chengxy-nds/Springboot-Notebook

    最近连着几天晚上在家总是接到一些奇奇怪怪的电话,“哥,你是 xxx 吧,我们这里是 xxx 高端男士私人会所...”,握草,我先是一愣,然后狠狠的骂了回去。一脸傲娇的转过头,面带微笑稍显谄媚:老婆你听我说,我真的啥也没干,你要相信我!

    啪~

    搞事情啊

    过后揉揉脸细想想,肯定是哪个不道德的网站,又把我的个人信息给卖了,现在的人上网都处于一个裸奔的状态,个人信息已不再属于个人,时下这种事好像也见怪不怪了,不过,出现这种事大多是有内鬼

    停止交易,有内鬼

    而作为开发者的我们,能做的就是尽量避免经我们手的用户数据泄露,那今天就来讲讲互联网中内部防止隐私数据泄露的手段-数据脱敏

    什么是数据脱敏

    先来看看什么是数据脱敏?数据脱敏也叫数据的去隐私化,在我们给定脱敏规则和策略的情况下,对敏感数据比如 手机号银行卡号 等信息,进行转换或者修改的一种技术手段,防止敏感数据直接在不可靠的环境下使用。

    像政府、医疗行业、金融机构、移动运营商是比较早开始应用数据脱敏的,因为他们所掌握的都是用户最核心的私密数据,如果泄露后果是不可估量的。

    数据脱敏的应用在生活中是比较常见的,比如我们在淘宝买东西订单详情中,商家账户信息会被用 * 遮挡,保障了商户隐私不泄露,这就是一种数据脱敏方式。

    淘宝详情

    数据脱敏又分为静态数据脱敏(SDM)和 动态数据脱敏(DDM):

    静态数据脱敏

    静态数据脱敏(SDM):适用于将数据抽取出生产环境脱敏后分发至测试、开发、培训、数据分析等场景。

    有时我们可能需要将生产环境的数据 copy 到测试、开发库中,以此来排查问题或进行数据分析,但出于安全考虑又不能将敏感数据存储于非生产环境,此时就要把敏感数据从生产环境脱敏完毕之后再在非生产环境使用。

    这样脱敏后的数据与生产环境隔离,满足业务需要的同时又保障了生产数据的安全。

    数据脱敏过程

    如上图所示,将用户的真实 姓名手机号身份证银行卡号 通过 替换无效化乱序对称加密 等方案进行脱敏改造。

    动态数据脱敏

    动态数据脱敏(DDM):一般用在生产环境,访问敏感数据时实时进行脱敏,因为有时在不同情况下对于同一敏感数据的读取,需要做不同级别的脱敏处理,例如:不同角色、不同权限所执行的脱敏方案会不同。

    注意:在抹去数据中的敏感内容同时,也需要保持原有的数据特征、业务规则和数据关联性,保证我们在开发、测试以及数据分析类业务不会受到脱敏的影响,使脱敏前后的数据一致性和有效性。总之一句话:你爱怎么脱就怎么脱,别影响我使用就行

    数据脱敏方案

    数据脱敏系统可以按照不同业务场景自行定义和编写脱敏规则,可以针对库表的某个敏感字段,进行数据的不落地脱敏。

    脱敏系统

    数据脱敏的方式有很多种,接下来以下图数据为准一个一个的演示每种方案。

    原始数据

    1、无效化

    无效化方案在处理待脱敏的数据时,通过对字段数据值进行 截断加密隐藏 等方式让敏感数据脱敏,使其不再具有利用价值。一般采用特殊字符(*等)代替真值,这种隐藏敏感数据的方法简单,但缺点是用户无法得知原数据的格式,如果想要获取完整信息,要让用户授权查询。

    截断方式

    比如我们将身份证号用 * 替换真实数字就变成了 "220724 ****** 3523",非常简单。

    隐藏方式

    2、随机值

    随机值替换,字母变为随机字母,数字变为随机数字,文字随机替换文字的方式来改变敏感数据,这种方案的优点在于可以在一定程度上保留原有数据的格式,往往这种方法用户不易察觉的。

    我们看到 nameidnumber 字段进行了随机化脱敏,而名字姓、氏随机化稍有特殊,需要有对应姓氏字典数据支持。

    随机值

    3、数据替换

    数据替换与前边的无效化方式比较相似,不同的是这里不以特殊字符进行遮挡,而是用一个设定的虚拟值替换真值。比如说我们将手机号统一设置成 “13651300000”。

    数据替换

    4、对称加密

    对称加密是一种特殊的可逆脱敏方法,通过加密密钥和算法对敏感数据进行加密,密文格式与原始数据在逻辑规则上一致,通过密钥解密可以恢复原始数据,要注意的就是密钥的安全性。

    对称加密

    5、平均值

    平均值方案经常用在统计场景,针对数值型数据,我们先计算它们的均值,然后使脱敏后的值在均值附近随机分布,从而保持数据的总和不变。

    原始数据

    对价格字段 price 做平均值处理后,字段总金额不变,但脱敏后的字段值都在均值 60 附近。

    平均值

    6、偏移和取整

    这种方式通过随机移位改变数字数据,偏移取整在保持了数据的安全性的同时保证了范围的大致真实性,比之前几种方案更接近真实数据,在大数据分析场景中意义比较大。

    比如下边的日期字段create_time2020-12-08 15:12:25 变为 2018-01-02 15:00:00

    取整

    数据脱敏规则在实际应用中往往都是多种方案配合使用,以此来达到更高的安全级别。

    总结

    无论是静态脱敏还是动态脱敏,其最终都是为了防止组织内部对隐私数据的滥用,防止隐私数据在未经脱敏的情况下从组织流出。所以作为一个程序员不泄露数据是最起码的操守。

    整理了几百本各类技术电子书,送给小伙伴们。关注公号回复【666】自行领取。和一些小伙伴们建了一个技术交流群,一起探讨技术、分享技术资料,旨在共同学习进步,如果感兴趣就加入我们吧!

    在这里插入图片描述

    无论你是刚入行、还是已经有几年经验的程序员,相信这份面试提纲都会给你不少助力,长按二维码关注 『 程序员内点事 』 ,回复 『 offer 』 自行领取,祝大家 offer 拿到手软

    在这里插入图片描述

  • 相关阅读:
    解决Flask使用pymysql驱动的Warning: (1366, "Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA...'
    java中的抽象类
    java中的接口
    java中获取数组中的最大值
    java中的面向对象
    java中的数组
    java中的方法
    java中的流程控制结构
    java中的运算符
    java中的类型转换
  • 原文地址:https://www.cnblogs.com/chengxy-nds/p/14107671.html
Copyright © 2011-2022 走看看