zoukankan      html  css  js  c++  java
  • poj 3264(简单线段树)

    思路很明确,直接用线段树.

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 26161   Accepted: 12250
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    using namespace std;
    #define N 50050
    #define INF 0x3fffffff
    int n,q;
    
    struct node
    {
        int b,d;
        int mx,mi; 
        node* Tl;
        node* Tr;
    }edge[10*N];
    
    int cnt;
    
    node *Tbuild(int s,int t)
    {
        node* tmp=&edge[cnt++];
        tmp->mi=INF;
        tmp->mx=-1;
        tmp->Tl=tmp->Tr=NULL;
        tmp->b=s; tmp->d=t;
        int mid=(s+t)/2;
        if(s!=t)
        {
            tmp->Tl=Tbuild(s,mid);
            tmp->Tr=Tbuild(mid+1,t);
        }
        return tmp;
    }
    
    node* head;
    
    void insert(node* tmp,int s,int k)
    {
        if(s>tmp->mx) tmp->mx=s;
        if(s<tmp->mi) tmp->mi=s;
        if(tmp->b==tmp->d&&tmp->d==k)  return ;
        int mid = (tmp->b+tmp->d)/2;
        if(k<=mid)
        {
            insert(tmp->Tl,s,k);
        }
        else insert(tmp->Tr,s,k);
    }
    
    int findmx(node * tmp,int s,int t)
    {
        if(tmp->b==s&&tmp->d==t)
        {
            return tmp->mx;
        }
        int mid=(tmp->b+tmp->d)/2;
        if(s>mid) return findmx(tmp->Tr,max(mid+1,s),t);
        if(t<=mid) return findmx(tmp->Tl,s,min(mid,t));
        return max(findmx(tmp->Tl,s,mid),findmx(tmp->Tr,mid+1,t));
    }
    
    int findmi(node * tmp,int s,int t)
    {
        if(tmp->b==s&&tmp->d==t)
        {
            return tmp->mi;
        }
        int mid=(tmp->b+tmp->d)/2;
        if(s>mid) return findmi(tmp->Tr,max(mid+1,s),t);
        if(t<=mid) return findmi(tmp->Tl,s,min(mid,t));
        return min(findmi(tmp->Tl,s,mid),findmi(tmp->Tr,mid+1,t));
    }
    
    int main()
    {
        cnt=0;
        scanf("%d%d",&n,&q);
        head=Tbuild(1,n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            insert(head,x,i);
        }
        for(int i=0;i<q;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            int tx,ti;
            tx=findmx(head,x,y);
            ti=findmi(head,x,y);
            printf("%d\n",tx-ti);
        }
        return 0;
    }
  • 相关阅读:
    kafka系列教程5(客户端实践)
    log4j示例-Daily方式(log4j.properties)
    Log4j.xml配置(rolling示例)
    Log4j配置详解之log4j.xml
    kafka 常用命令
    linux下进程cpu占用过高问题定位方法
    Linux 操作系统主机名变成bogon怎么解决?
    网络基础 Windows控制台下Ftp使用简介
    网络基础 cookie详解
    网络基础 http 会话(session)详解
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/2934860.html
Copyright © 2011-2022 走看看