zoukankan      html  css  js  c++  java
  • hdu 2295(DLX+二分)


    用了点离散化的处理, 然后二分一下就可以了。。。

    Radar

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1928    Accepted Submission(s): 796

    Problem Description
    N cities of the Java Kingdom need to be covered by radars for being in a state of war. Since the kingdom has M radar stations but only K operators, we can at most operate K radars. All radars have the same circular coverage with a radius of R. Our goal is to minimize R while covering the entire city with no more than K radars.
     
    Input
    The input consists of several test cases. The first line of the input consists of an integer T, indicating the number of test cases. The first line of each test case consists of 3 integers: N, M, K, representing the number of cities, the number of radar stations and the number of operators. Each of the following N lines consists of the coordinate of a city. Each of the last M lines consists of the coordinate of a radar station.
    All coordinates are separated by one space. Technical Specification
    1. 1 ≤ T ≤ 20 2. 1 ≤ N, M ≤ 50 3. 1 ≤ K ≤ M 4. 0 ≤ X, Y ≤ 1000
     
    Output
    For each test case, output the radius on a single line, rounded to six fractional digits.
     
    Sample Input
    1 3 3 2 3 4 3 1 5 4 1 1 2 2 3 3
     
    Sample Output
    2.236068
     
    Source
     
    Recommend
    lcy
     
    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    #include <math.h>
    #include <iostream>
    using namespace std;
    #define N 10000
    #define INF 0x3fffffff
    struct node
    {
        double x,y;
    }gn[55],gm[55];
    
    int n,m,k;
    int U[N],D[N],R[N],L[N],num[N],H[N],col[N],line[N];
    int head,id,mi;
    int  nn,mm;
    double g[N];
    
    
    double cal(node t,node t1)
    {
        return sqrt( (t.x-t1.x)*(t.x-t1.x)+(t.y-t1.y)*(t.y-t1.y) );
    }
    
    void prepare()
    {
        for(int i=0;i<=mm;i++)
        {
            num[i]=0;
            U[i]=i;
            D[i]=i;
            R[i]=i+1;
            L[i+1]=i;
        }
        R[mm]=0;
        L[0]=mm;
        memset(H,-1,sizeof(H));
    }
    
    void link(int tn,int tm)
    {
        id++;
        num[line[id]=tm]++;
        col[id]=tn;
        U[D[tm]]=id;
        D[id]=D[tm];
        U[id]=tm;
        D[tm]=id;
        if( H[tn]<0 ) H[tn]=R[id]=L[id]=id;
        else
        {
            L[R[H[tn]]]=id;
            R[id]=R[H[tn]];
            L[id]=H[tn];
            R[H[tn]]=id;
        }
    }
    
    int h()
    {
        int mark[66];
        memset(mark,0,sizeof(mark));
        int sum=0;
        for(int i=R[head];i!=head;i=R[i])
        {
            if(mark[i]==0)
            {
                sum++;
                mark[i]=1;
                for(int j=D[i];j!=i;j=D[j])
                    for(int k=R[j];k!=j;k=R[k])
                        mark[ line[k] ]=1;
            }
        }
        return sum;
    }
    
    void remove(int s)
    {
        for(int i=D[s];i!=s;i=D[i])
        {
            R[L[i]]=R[i];
            L[R[i]]=L[i];
        }
    }
    
    void resume(int s)
    {
        for(int i=U[s];i!=s;i=U[i])
            R[L[i]]=L[R[i]]=i;
    }
    
    void dfs(int s)
    {
        if(s+h()>=mi) return ;
        if(R[head]==head)
        {
            mi=s;
            return ;
        }
        int tmi=INF,tu;
        for(int i=R[head];i!=head;i=R[i])
        {
            if(num[i]<tmi)
            {
                tmi=num[i];
                tu=i;
            }
        }
        for(int i=D[tu];i!=tu;i=D[i])
        {
            remove(i);
            for(int j=R[i];j!=i;j=R[j])
                remove(j);
            dfs(s+1);
            for(int j=L[i];j!=i;j=L[j])
                resume(j);
            resume(i);
        }
    }
    
    int DLX(double key)
    {
        head=0;
        mm=n;
        nn=1;
        prepare();
        id=mm;
        for(int i=1;i<=m;i++)
        {
            int flag=0;
            for(int j=1;j<=n;j++)
            {
                if(cal(gn[j],gm[i]) <= key)
                {
                    flag=1;
                    link(i,j);
                }
            }
            if(flag==1) nn++;
        }
        mi=INF;
        dfs(0);
        if(mi<=k)
            return 1;
        else return 0;
    }
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d%d",&n,&m,&k);
            for(int i=1;i<=n;i++)
            {
                scanf("%lf%lf",&gn[i].x,&gn[i].y);
            }
            for(int i=1;i<=m;i++)
            {
                scanf("%lf%lf",&gm[i].x,&gm[i].y);
            }
            int cnt=0;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++)
                {
                    g[cnt++]=cal(gn[i],gm[j]);
                }
            sort(g,g+cnt);
            int b=0,d=cnt-1;
            while(b<d)
            {
                int mid=(b+d)/2; // 因为是选d 所以要使d绝对不能等于mid 
                if( DLX(g[mid])==1 )
                {
                    d=mid; // 要抓住关键的是找最大还最小, 要让=mid 的哪个尽量与mid不相等
                }
                else
                {
                    b=mid+1;
                }
            }
            double ans;
            ans=(g[b]*10000000+0.5)/10000000;
            printf("%.6lf\n",g[b]);
        }
        return 0;
    }
  • 相关阅读:
    Python--day43--mysql自增列之起始值和步长
    Python--day43--补充之主键和外键
    Python--day42--MySQL外键定义及创建
    Python--day42--mysql操作数据库及数据表和基本增删改查
    Python--day42--mysql创建用户及授权
    sql数据库基础
    Python--day41--线程池--python标准模块concurrent.futures
    C# 第三方DLL,可以实现PDF转图片,支持32位系统、64位系统
    ASP.NET 使用Session,避免用户F5刷新时重复提交(转)
    (重要,部署和发布)c# webApi 服务端和客户端 详细实例
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/3007312.html
Copyright © 2011-2022 走看看