zoukankan      html  css  js  c++  java
  • poj 1466(最大点独立集)

    由konig定理 最小点覆盖==最大匹配

    可以发现的是在一个二分图中只要将最小点覆盖集中的点都去掉,那么剩下的点之间就没有边了, 也就是剩下来的为最大点独立集

    然后就可以用 (最大点独立集)==(n-最小点覆盖)==(n-最大匹配)

    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 9325   Accepted: 4123

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: 
    the number of students  the description of each student, in the following format  student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...  or  student_identifier:(0) 
    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

    #include <stdio.h>
    #include <string.h>
    #define N 1010
    int n;
    
    int g[505][505];
    int cnt,pre[N];
    int mark[N],frt[N];
    int save1[N],save2[N];
    int cnt1,cnt2;
    
    
    void fdfs(int s,int f)
    {
        if(f==0) save1[cnt1++]=s;
        else save2[cnt2++]=s;
        mark[s]=f;
        for(int i=0;i<n;i++)
        {
            if( g[s][i]==0 ) continue;
            if( mark[i]==-1 ) fdfs(i,f^1);
        }
    }
    
    int dfs(int s)
    {
        for(int i=0;i<cnt2;i++)
        {
            
            if(g[ save1[s] ][ save2[i] ]==0||mark[i]==1) continue;
            mark[i]=1;
            if(frt[i]==-1||dfs(frt[i]))
            {
                frt[i]=s;
                return 1;
            }
        }
        return 0;
    }
    
    int main()
    {
        int ans;
        while( scanf("%d",&n) != EOF )
        {
            cnt1=cnt2=0;
            ans=0;
            memset(g,0,sizeof(g));
            for(int i=0;i<n;i++)
            {
                int x,y;
                scanf("%d: (%d)",&x,&y);
                //if(y==0) ans++;
                for(int j=0;j<y;j++)
                {
                    int tmp;
                    scanf("%d",&tmp);
                    g[i][tmp]=g[tmp][i]=1;
                }
            }
            memset(mark,-1,sizeof(mark));
            for(int i=0;i<n;i++)
            {
                if(mark[i]!=-1) continue;
                fdfs(i,0);
            }    
            int sum=0;
            memset(frt,-1,sizeof(frt));
            for(int i=0;i<cnt1;i++)
            {
                memset(mark,0,sizeof(mark));
                sum += dfs(i);
            }
            printf("%d\n",n-sum);
        }
        return 0;
    }
     
  • 相关阅读:
    使用线程池对应用程序产生线程个数与占用CPU时间的影响
    枚举类型解析
    性能监视器的简单使用
    WCF 承载服务
    ManulResetEvent与AutoResetEvent
    获取当前目录的上级目录
    WCF 异步调用
    适配器设计模式
    控制控制台自身的最大化最小化
    代码自动生成技术相关介绍
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/3025618.html
Copyright © 2011-2022 走看看