zoukankan      html  css  js  c++  java
  • poj 1466(最大点独立集)

    由konig定理 最小点覆盖==最大匹配

    可以发现的是在一个二分图中只要将最小点覆盖集中的点都去掉,那么剩下的点之间就没有边了, 也就是剩下来的为最大点独立集

    然后就可以用 (最大点独立集)==(n-最小点覆盖)==(n-最大匹配)

    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 9325   Accepted: 4123

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: 
    the number of students  the description of each student, in the following format  student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...  or  student_identifier:(0) 
    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

    #include <stdio.h>
    #include <string.h>
    #define N 1010
    int n;
    
    int g[505][505];
    int cnt,pre[N];
    int mark[N],frt[N];
    int save1[N],save2[N];
    int cnt1,cnt2;
    
    
    void fdfs(int s,int f)
    {
        if(f==0) save1[cnt1++]=s;
        else save2[cnt2++]=s;
        mark[s]=f;
        for(int i=0;i<n;i++)
        {
            if( g[s][i]==0 ) continue;
            if( mark[i]==-1 ) fdfs(i,f^1);
        }
    }
    
    int dfs(int s)
    {
        for(int i=0;i<cnt2;i++)
        {
            
            if(g[ save1[s] ][ save2[i] ]==0||mark[i]==1) continue;
            mark[i]=1;
            if(frt[i]==-1||dfs(frt[i]))
            {
                frt[i]=s;
                return 1;
            }
        }
        return 0;
    }
    
    int main()
    {
        int ans;
        while( scanf("%d",&n) != EOF )
        {
            cnt1=cnt2=0;
            ans=0;
            memset(g,0,sizeof(g));
            for(int i=0;i<n;i++)
            {
                int x,y;
                scanf("%d: (%d)",&x,&y);
                //if(y==0) ans++;
                for(int j=0;j<y;j++)
                {
                    int tmp;
                    scanf("%d",&tmp);
                    g[i][tmp]=g[tmp][i]=1;
                }
            }
            memset(mark,-1,sizeof(mark));
            for(int i=0;i<n;i++)
            {
                if(mark[i]!=-1) continue;
                fdfs(i,0);
            }    
            int sum=0;
            memset(frt,-1,sizeof(frt));
            for(int i=0;i<cnt1;i++)
            {
                memset(mark,0,sizeof(mark));
                sum += dfs(i);
            }
            printf("%d\n",n-sum);
        }
        return 0;
    }
     
  • 相关阅读:
    【原创】R61509/SPFD5420A驱动调试总结
    [轉貼]程序员需要具备的基本技能
    Entity SQL 说说IN关键字
    细说可空类型 nullable
    C#值类型与引用类型之我见
    解密区域集成服务器
    序列化对象,使用的三种方式:Xml,Binary,Soap
    有时间就买点书
    hdu2680 Choose the best route
    SQLServer 函数类型简要说明
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/3025618.html
Copyright © 2011-2022 走看看