zoukankan      html  css  js  c++  java
  • poj 1466(最大点独立集)

    由konig定理 最小点覆盖==最大匹配

    可以发现的是在一个二分图中只要将最小点覆盖集中的点都去掉,那么剩下的点之间就没有边了, 也就是剩下来的为最大点独立集

    然后就可以用 (最大点独立集)==(n-最小点覆盖)==(n-最大匹配)

    Girls and Boys
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 9325   Accepted: 4123

    Description

    In the second year of the university somebody started a study on the romantic relations between the students. The relation "romantically involved" is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been "romantically involved". The result of the program is the number of students in such a set.

    Input

    The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description: 
    the number of students  the description of each student, in the following format  student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...  or  student_identifier:(0) 
    The student_identifier is an integer number between 0 and n-1 (n <=500 ), for n subjects.

    Output

    For each given data set, the program should write to standard output a line containing the result.

    Sample Input

    7
    0: (3) 4 5 6
    1: (2) 4 6
    2: (0)
    3: (0)
    4: (2) 0 1
    5: (1) 0
    6: (2) 0 1
    3
    0: (2) 1 2
    1: (1) 0
    2: (1) 0

    Sample Output

    5
    2

    Source

    #include <stdio.h>
    #include <string.h>
    #define N 1010
    int n;
    
    int g[505][505];
    int cnt,pre[N];
    int mark[N],frt[N];
    int save1[N],save2[N];
    int cnt1,cnt2;
    
    
    void fdfs(int s,int f)
    {
        if(f==0) save1[cnt1++]=s;
        else save2[cnt2++]=s;
        mark[s]=f;
        for(int i=0;i<n;i++)
        {
            if( g[s][i]==0 ) continue;
            if( mark[i]==-1 ) fdfs(i,f^1);
        }
    }
    
    int dfs(int s)
    {
        for(int i=0;i<cnt2;i++)
        {
            
            if(g[ save1[s] ][ save2[i] ]==0||mark[i]==1) continue;
            mark[i]=1;
            if(frt[i]==-1||dfs(frt[i]))
            {
                frt[i]=s;
                return 1;
            }
        }
        return 0;
    }
    
    int main()
    {
        int ans;
        while( scanf("%d",&n) != EOF )
        {
            cnt1=cnt2=0;
            ans=0;
            memset(g,0,sizeof(g));
            for(int i=0;i<n;i++)
            {
                int x,y;
                scanf("%d: (%d)",&x,&y);
                //if(y==0) ans++;
                for(int j=0;j<y;j++)
                {
                    int tmp;
                    scanf("%d",&tmp);
                    g[i][tmp]=g[tmp][i]=1;
                }
            }
            memset(mark,-1,sizeof(mark));
            for(int i=0;i<n;i++)
            {
                if(mark[i]!=-1) continue;
                fdfs(i,0);
            }    
            int sum=0;
            memset(frt,-1,sizeof(frt));
            for(int i=0;i<cnt1;i++)
            {
                memset(mark,0,sizeof(mark));
                sum += dfs(i);
            }
            printf("%d\n",n-sum);
        }
        return 0;
    }
     
  • 相关阅读:
    Vue的响应式和双向绑定的实现
    JS-跨域请求豆瓣API提供的数据
    豆瓣电影API接口
    JS/PHP-表单文件域上传文件和PHP后台处理
    jQuery-attr,prop及自定义属性
    PHP-关于php代码和html,js混编
    JS-Chrome控制台console.log会访问即时数据
    JS-time和timeEnd
    JS-用ID值直接操作DOM
    CSS-07 行内设置点击事件
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/3025618.html
Copyright © 2011-2022 走看看