纠结的一道dp。
状态转移方程还是比较好想的,优化比较纠结
Everything is great about Ilya's city, except the roads. The thing is, the only ZooVille road is represented as n holes in a row. We will consider the holes numbered from 1 to n, from left to right.
Ilya is really keep on helping his city. So, he wants to fix at least k holes (perharps he can fix more) on a single ZooVille road.
The city has m building companies, the i-th company needs ci money units to fix a road segment containing holes with numbers of at least li and at most ri. The companies in ZooVille are very greedy, so, if they fix a segment containing some already fixed holes, they do not decrease the price for fixing the segment.
Determine the minimum money Ilya will need to fix at least k holes.
The first line contains three integers n, m, k (1 ≤ n ≤ 300, 1 ≤ m ≤ 105, 1 ≤ k ≤ n). The next m lines contain the companies' description. The i-th line contains three integers li, ri, ci (1 ≤ li ≤ ri ≤ n, 1 ≤ ci ≤ 109).
Print a single integer — the minimum money Ilya needs to fix at least k holes.
If it is impossible to fix at least k holes, print -1.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.
10 4 6
7 9 11
6 9 13
7 7 7
3 5 6
17
10 7 1
3 4 15
8 9 8
5 6 8
9 10 6
1 4 2
1 4 10
8 10 13
2
10 1 9
5 10 14
-1
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #include <math.h> #include <map> #include <queue> #include <sstream> #include <iostream> using namespace std; #define INF 0x3fffffffffff typedef __int64 LL; struct node { int x,y,w; }g[100100]; int n,m,k; LL dp[303][303]; LL get[303][303]; LL mx[303]; int cmp(node t,node t1) { if(t.x!=t1.x) return t.x<t1.x; return t.y>t1.y; } //真的如此碉炸天 int main() { //freopen("//home//chen//Desktop//ACM//in.text","r",stdin); //freopen("//home//chen//Desktop//ACM//out.text","w",stdout); scanf("%d%d%d",&n,&m,&k); for(int i=0;i<303;i++) for(int j=0;j<303;j++) dp[i][j]=INF; memset(get,0,sizeof(get)); memset(g,0,sizeof(g)); for(int i=0;i<m;i++) { scanf("%d%d%d",&g[i].x,&g[i].y,&g[i].w); g[i].y=g[i].y-g[i].x; } sort(g,g+m,cmp); int i=1,j=0; LL mi = INF; int tmp; while( i <= n ) { mi=INF; tmp=n; while(g[j].x == i) { for(int i1=tmp;i1>=g[j].y;i1--) get[i][i1]=mi; tmp=g[j].y; mi=min(mi,(__int64)g[j].w); j++; } for(int i1=tmp;i1>=0;i1--) get[i][i1]=mi; i++; } for(i=1;i<=k;i++) mx[i]=INF; // 0个的时候,不需要w // 很好的dp压缩! for(i=1;i<=n;i++) { if(get[i][0]!=INF) { for(j=0;j <k;j++) { for(int i1=0;i1+j<k;i1++) dp[i+j][i1+j+1]=min(dp[i+j][i1+j+1],mx[i1]+get[i][j]); //纠结的状态转移方程! } } for(j=0;j<=k;j++) { mx[j]=min(mx[j],dp[i][j]); // 每一个都是独立的! dp[i][j]=mx[j]; } } if(mx[k]==INF) printf("-1"); else printf("%I64d",mx[k]); return 0; }