zoukankan      html  css  js  c++  java
  • 计算几何,代码开头

    #include <iostream>
    #include <cmath>
    #include <vector>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    using namespace std;
    
    #define MAX_N 110
    
    /*------------------常量区-------------------*/
    
    const double INF        = 1e10;      // 无穷大
    const double EPS        = 1e-6;      // 计算精度
    const double PI         = acos(-1.0);// PI
    const int PINXING       = 0;         // 平行
    const int XIANGJIAO     = 1;         // 相交
    const int XIANGLI       = 0;         // 相离
    const int GONGXIAN      = 2;         // 共线
    const int CHONGDIE      = -1;        // 重叠
    const int INSIDE        = 1;         // 点在图形内部
    const int OUTSIDE       = 0;         // 点在图形外部
    const int BORDER        = 2;         // 点在图形边界
    
    /*-----------------类型定义区----------------*/
    
    struct Point {              // 二维点或矢量
        double x, y;
        //double angle, dis;
        Point() {}
        Point(double x0, double y0): x(x0), y(y0) {}
        void read()
        {
            scanf("%lf%lf",&x,&y);
        }
    };
    struct Point3D {            //三维点或矢量
        double x, y, z;
        Point3D() {}
        Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {}
    };
    struct Line {               // 二维的直线或线段
        Point p1, p2;
        Line() {}
        Line(Point p10, Point p20): p1(p10), p2(p20) {}
        void read()
        {
            scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y);
        }
    };
    struct Line3D {             // 三维的直线或线段
        Point3D p1, p2;
        Line3D() {}
        Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {}
    };
    struct Rect {              // 用长宽表示矩形的方法 w, h分别表示宽度和高度
        double w, h;
        Rect() {}
        Rect(double _w,double _h) : w(_w),h(_h) {}
    };
    struct Rect_2 {             // 表示矩形,左下角坐标是(xl, yl),右上角坐标是(xh, yh)
        double xl, yl, xh, yh;
        Rect_2() {}
        Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {}
    };
    struct Circle {            //
        Point c;
        double r;
        Circle() {}
        Circle(Point _c,double _r) :c(_c),r(_r) {}
    };
    
    typedef vector<Point> Polygon;      // 二维多边形
    typedef vector<Point> Points;       // 二维点集
    
    /*-------------------基本函数区---------------------*/
    
    inline double max(double x,double y)
    {
        return x > y ? x : y;
    }
    inline double min(double x, double y)
    {
        return x > y ? y : x;
    }
    inline bool ZERO(double x)              // x == 0
    {
        return (fabs(x) < EPS);
    }
    inline bool ZERO(Point p)               // p == 0
    {
        return (ZERO(p.x) && ZERO(p.y));
    }
    inline bool ZERO(Point3D p)              // p == 0
    {
        return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z));
    }
    inline bool EQ(double x, double y)      // eqaul, x == y
    {
        return (fabs(x - y) < EPS);
    }
    inline bool NEQ(double x, double y)     // not equal, x != y
    {
        return (fabs(x - y) >= EPS);
    }
    inline bool LT(double x, double y)     // less than, x < y
    {
        return ( NEQ(x, y) && (x < y) );
    }
    inline bool GT(double x, double y)     // greater than, x > y
    {
        return ( NEQ(x, y) && (x > y) );
    }
    inline bool LEQ(double x, double y)     // less equal, x <= y
    {
        return ( EQ(x, y) || (x < y) );
    }
    inline bool GEQ(double x, double y)     // greater equal, x >= y
    {
        return ( EQ(x, y) || (x > y) );
    }
    
    // 输出浮点数前,防止输出-0.00调用该函数进行修正!
    inline double FIX(double x)
    {
        return (fabs(x) < EPS) ? 0 : x;
    }
    
    
    /*------------------二维矢量运算重载区---------------------*/
    bool operator==(Point p1, Point p2)
    {
        return ( EQ(p1.x, p2.x) &&  EQ(p1.y, p2.y) );
    }
    bool operator!=(Point p1, Point p2)
    {
        return ( NEQ(p1.x, p2.x) ||  NEQ(p1.y, p2.y) );
    }
    bool operator<(Point p1, Point p2)
    {
        if (NEQ(p1.x, p2.x)) {
            return (p1.x < p2.x);
        } else {
            return (p1.y < p2.y);
        }
    }
    Point operator+(Point p1, Point p2)
    {
        return Point(p1.x + p2.x, p1.y + p2.y);
    }
    Point operator-(Point p1, Point p2)
    {
        return Point(p1.x - p2.x, p1.y - p2.y);
    }
    double operator*(Point p1, Point p2) // 计算叉乘 p1 × p2
    {
        return (p1.x * p2.y - p2.x * p1.y);
    }
    double operator&(Point p1, Point p2) { // 计算点积 p1·p2
        return (p1.x * p2.x + p1.y * p2.y);
    }
    double Norm(Point p) // 计算矢量p的模
    {
        return sqrt(p.x * p.x + p.y * p.y);
    }
    
    /*-------------------基本函数区------------------*/
    
    //得到两点之间的距离
    double Dis(Point p1,Point p2)
    {
        return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) );
    }
    
    //求二维平面上点到直线的距离
    double Dis(Point p, Line L)
    {
        return ( fabs((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1) );
    }
    
    //得到两点之间距离的平方,为减少误差用
    double Dis2(Point p1,Point p2)
    {
        return (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y);
    }
    
    //返回A关于B的对称点C,即(A+C)/2=b
    Point SymmetryPoint(Point A,Point B)
    {
        Point C;
        C.x = 2*B.x-A.x;
        C.y = 2*B.y-A.y;
        return C;
    }
    
    // 把矢量p旋转角度angle (弧度表示)
    // angle > 0表示逆时针旋转
    // angle < 0表示顺时针旋转
    Point Rotate(Point p, double angle)
    {
        Point result;
        result.x = p.x * cos(angle) - p.y * sin(angle);
        result.y = p.x * sin(angle) + p.y * cos(angle);
        return result;
    }
    
    //得到向量p与x正半轴的夹角[0,2PI)
    double GetAngle(Point p)
    {
        double tmp=atan2(p.y,p.x);
        if(tmp<0) tmp=2*PI+tmp;
        return tmp;
    }
    //得到两个向量之间的夹角[0,PI]
    //若p1按顺时针转到p2的角小于PI(p1在p2的逆时针方向),则返回正数.否则返回负数.
    double GetAngle(Point p1,Point p2)
    {
        double tmp = GetAngle(p1) - GetAngle(p2);
        if( GT( tmp,PI) ) return -(2*PI-tmp);
        if( LEQ( tmp,-PI) ) return (tmp+2*PI);
        return tmp;
    }
    
    
    // 判断二维平面上点是否在线段上
    // 输入:任意点p,和任意直线L
    // 输出:p在线段上返回1,否则返回0
    bool OnSeg(Point p, Line L)
    {
        return ( ZERO( (L.p1 - p) * (L.p2 - p) ) &&
                LEQ((p.x - L.p1.x)*(p.x - L.p2.x), 0) &&
                LEQ((p.y - L.p1.y)*(p.y - L.p2.y), 0) );
    }
    
    // 判断二维平面上点p是否在直线L上,在线段上返回1,否则返回0
    bool OnLine(Point p, Line L)
    {
        return ZERO( (p - L.p1) * (L.p2 - L.p1) );
    }
    
    bool OnCir(Point p,Circle cir)
    {
        return EQ( (p.x-cir.c.x)*(p.x-cir.c.x)+(p.y-cir.c.y)*(p.y-cir.c.y),cir.r*cir.r );
    }
    
    //得到点p到直线L的距离,并返回p到直直线L的最近点rep
    double PointToLine(Point p,Line L,Point& rep)
    {
        if(L.p1==L.p2)
        {
            rep=L.p1;
            return Dis(p,L.p1);
        }
        Point a,b;
        a = L.p2-L.p1;
        b = p-L.p1;
        double dis12 = Dis(L.p1,L.p2);
        double dis = ( fabs(a*b) )/dis12;
        
        double k = (a&b)/(Norm(a)*dis12) ;
        rep.x = L.p1.x + k*(L.p2.x-L.p1.x);
        rep.y = L.p1.y + k*(L.p2.y-L.p1.y);
        
        return dis;
    }
    
    //得到点P到线段L的距离,并放回p到线段L的最近点rep
    double PointToSeg(Point P, Line L,Point& rep)
    {
        if(L.p1 == L.p2)
        {
            rep = L.p1;
            return Dis(rep,P);//如果线段是一个点,返回这个点。
        }
        Point result;
        double a, b, t;
        
        a = L.p2.x - L.p1.x;
        b = L.p2.y - L.p1.y;
        t = ( (P.x - L.p1.x) * a + (P.y - L.p1.y) * b ) / (a * a + b * b);//线段上的投影
        
        if ( GEQ(t, 0) && LEQ(t, 1) ) {
            result.x = L.p1.x + a * t;//值得学习的由比例求坐标的方法。
            result.y = L.p1.y + b * t;
        } else {
            if ( Norm(P - L.p1) < Norm(P - L.p2) ) {
                result = L.p1;
            } else {
                result = L.p2;
            }
        }
        return Dis(result, P);
    }
    
    
    //返回点A关于直线L的对称点
    Point SymmetryPonitToLine(Point A,Line L)
    {
        Point B;
        PointToLine(A, L, B);//A在L上的投影
        return SymmetryPoint(A, B);
    }
    
    /*-------------------几何题面积计算(注意正负!)----------------------*/
    
    // 根据三个顶点坐标计算三角形面积
    // 面积的正负按照右手旋规则确定,向量AB->向量AC
    double Area(Point A, Point B, Point C)
    {
        return ((B-A)*(C-A) / 2.0);
    }
    
    // 根据三条边长计算三角形面积
    double Area(double a, double b, double c)
    {
        double s = (a + b + c) / 2.0;
        return sqrt(s * (s - a) * (s - b) * (s - c));
    }
    
    //求圆的面积
    double Area(Circle C)
    {
        return PI * C.r * C.r;
    }
    
    // 计算多边形面积,复杂度:O(顶点数)
    // 面积的正负按照右手旋规则确定,顺时针为负
    double Area(Polygon _poly)
    {
        int nsize=_poly.size();
        double area=0;
        for(int i=0;i<nsize;i++)
        {
            area += _poly[i]*_poly[(i+1)%nsize];
        }
        return area/2.0;
    }
    
    //求两条直线之间的关系(二维)
    //输入:两条不为点的直线
    //输出:相交返回XIANGJIAO和交点p,平行返回PINGXING,共线返回GONGXIAN
    int LineAndLine(Line L1,Line L2,Point &p)
    {
        Point px,py;
        px = L1.p1 - L1.p2;
        py = L2.p1 - L2.p2;
        if( EQ(px*py,0) )//平行或者共线
        {
            if( ZERO( (L2.p1-L1.p1)*py ) ) //共线
            {
                return GONGXIAN;
            }
            return PINXING;
        }
        
        double xa,xb,xc,ya,yb,yc;
        xa=(L1.p2.y-L1.p1.y); xb=(L1.p1.x-L1.p2.x); xc=(L1.p1.y*L1.p2.x-L1.p1.x*L1.p2.y);
        ya=(L2.p2.y-L2.p1.y); yb=(L2.p1.x-L2.p2.x); yc=(L2.p1.y*L2.p2.x-L2.p1.x*L2.p2.y);
        
        p.y = (xa*yc-xc*ya)/(xb*ya-xa*yb);
        p.x = (xb*yc-xc*yb)/(xa*yb-xb*ya);
        
        return XIANGJIAO;
    }
    
    //判断两条线段是否相交,相交返回1
    bool SegAndSeg(Line L1,Line L2)
    {
        return ( GEQ( max(L1.p1.x, L1.p2.x), min(L2.p1.x, L2.p2.x) ) &&
                GEQ( max(L2.p1.x, L2.p2.x), min(L1.p1.x, L1.p2.x) ) &&
                GEQ( max(L1.p1.y, L1.p2.y), min(L2.p1.y, L2.p2.y) ) &&
                GEQ( max(L2.p1.y, L2.p2.y), min(L1.p1.y, L1.p2.y) ) &&
                LEQ( ((L2.p1 - L1.p1) * (L1.p2 - L1.p1)) * ((L2.p2 -  L1.p1) * (L1.p2 - L1.p1)), 0 ) &&
                LEQ( ((L1.p1 - L2.p1) * (L2.p2 - L2.p1)) * ((L1.p2 -  L2.p1) * (L2.p2 - L2.p1)), 0 ) );
    }
    
    
    //求两条线段交点(二维)
    //输入:两条不为点的直线
    //输出:相交返回XIANGJIAO和交点p,相离返回XIANGLI,重叠返回CHONGDIE
    int SegAndSeg(Line L1,Line L2,Point &p)
    {
        
        double signx,signy;
        
        //跨立实验
        if( LEQ(signx=( ((L1.p2-L1.p1)*(L1.p1-L2.p1))*((L1.p2-L1.p1)*(L1.p1-L2.p2)) ),0) &&
           LEQ(signy=( ((L2.p2-L2.p1)*(L2.p1-L1.p1))*((L2.p2-L2.p1)*(L2.p1-L1.p2)) ),0) )
        {
            if( ZERO(signx) && ZERO(signy) )
            {
                //线段共线
                signx = min( max(L1.p1.x,L1.p2.x),max(L2.p1.x,L2.p2.x) )-
                max( min(L1.p1.x,L1.p2.x),min(L2.p1.x,L2.p2.x) );
                
                signy = min( max(L1.p1.y,L1.p2.y),max(L2.p1.y,L2.p2.y) )-
                max( min(L1.p1.y,L1.p2.y),min(L2.p1.y,L2.p2.y) );
                
                if( ZERO(signx) && ZERO(signy) ) //说明共线,且相交一点
                {
                    if(L1.p1==L2.p1||L1.p1==L2.p2) p=L1.p1;
                    if(L1.p2==L2.p1||L1.p2==L2.p2) p=L1.p2;
                    return XIANGJIAO;
                }
                else if( GEQ(signx, 0) && GEQ(signy, 0) )
                {
                    return CHONGDIE;//重叠
                }
                else
                {
                    return XIANGLI;//相离
                }
            }
            return LineAndLine(L1, L2, p);//转化为直线相交
        }
        return  XIANGLI;//相离
    }
    
    
    // 判断点p是否在简单多边形poly内, 多边形可以是凸的或凹的
    // poly的顶点数目要大于等于3
    // 返回值为:
    // INSIDE  -- 点在poly内
    // BORDER  -- 点在poly边界上
    // OUTSIDE -- 点在poly外
    int InPolygon(const Polygon poly, Point p)
    {
        int i, n, count;
        Line ray, side;
        
        n = poly.size();
        count = 0;
        ray.p1    = p;
        ray.p2.y  = p.y;
        ray.p2.x  = - INF;// 设定一个极大值
        
        for (i = 0; i < n; i++) {
            side.p1 = poly[i];
            side.p2 = poly[(i+1)%n];
            
            if( OnSeg(p, side) ) {
                return BORDER;
            }
            // 如果side平行x轴则不作考虑
            if ( EQ(side.p1.y, side.p2.y) ) {
                continue;
            }
            if (OnSeg(side.p1, ray)) {
                if ( GT(side.p1.y, side.p2.y) ) count++;
            } else if (OnSeg(side.p2, ray)) {
                if ( GT(side.p2.y, side.p1.y) ) count++;
            } else if ( SegAndSeg(ray, side) ) {
                count++;
            }
        }
        return ((count % 2 == 1) ? INSIDE : OUTSIDE);
    }
    
    //得到直线与圆的交点
    int LineToCir(Line L,Circle R,Point p[2])
    {
        if(L.p1 == L.p2)//当直线为1个点时
        {
            if( EQ( Dis(L.p1, R.c),R.r ) )
            {
                p[0]=L.p1;
                return 1;
            }
            else return 0;//相离
        }
        Point tp;//表示圆心在直线L上的投影。
        double dis=PointToLine(R.c, L,tp );
        if( LT(R.r, dis) )//相离
        {
            return 0;
        }
        if( EQ(dis,R.r) )//相切
        {
            p[0]=tp;
            return 1;
        }
        double len=sqrt(R.r*R.r-dis*dis);
        Point onep=L.p2-L.p1;
        double _t  = len/Norm(onep);
        
        p[0].x =tp.x + onep.x*_t;
        p[0].y =tp.y + onep.y*_t;
        
        onep=L.p1-L.p2;
        p[1].x =tp.x + onep.x*_t;
        p[1].y =tp.y + onep.y*_t;
        
        return 2;
    }
    
    //得到三角形外接圆
    //注意:A,B,C三点不能共线
    Circle OutCircle(Point A,Point B,Point C)
    {
        Circle tmp;
        double a, b, c, c1, c2;
        double xA, yA, xB, yB, xC, yC;
        a = Dis(A, B);
        b = Dis(B, C);
        c = Dis(C, A);
        //根据 S = a * b * c / R / 4;求半径 R
        tmp.r = (a*b*c)/( fabs(Area(A,B,C)) *4.0);
        xA = A.x;
        yA = A.y;
        xB = B.x;
        yB = B.y;
        xC = C.x;
        yC = C.y;
        c1 = (xA*xA+yA*yA - xB*xB-yB*yB) / 2;
        c2 = (xA*xA+yA*yA - xC*xC-yC*yC) / 2;
        tmp.c.x = (c1*(yA - yC)-c2*(yA - yB)) / ((xA - xB)*(yA - yC)-(xA - xC)*(yA - yB));
        tmp.c.y = (c1*(xA - xC)-c2*(xA - xB)) / ((yA - yB)*(xA - xC)-(yA - yC)*(xA - xB));
        return tmp;
    }
    
    //得到三角形内切圆
    //注意:A,B,C三点不能共线
    Circle InCircle(Point A,Point B,Point C)
    {
        Circle rec;
        double a=Dis(B,C);
        double b=Dis(A,C);
        double c=Dis(A,B);
        rec.c.x = (a*A.x+b*B.x+c*C.x)/(a+b+c);
        rec.c.y = (a*A.y+b*B.y+c*C.y)/(a+b+c);
        rec.r = 2*fabs( Area(A,B,C) )/(a+b+c);
        return rec;
    }
    
    //得到两圆的面积并
    double CirArea(Circle _c1,Circle _c2)
    {
        if(_c2.r<_c1.r) swap(_c1,_c2); //保证_c2的半径大
        double d12 = Dis(_c1.c,_c2.c);
        if( LEQ(_c1.r+_c2.r,d12) )//相离
        {
            return 0;
        }
        if( LEQ(d12+_c1.r, _c2.r) )//包含
        {
            return Area(_c1);
        }
        //相交
        double _area=0;
        _area -= 2.0*Area(_c1.r,_c2.r,d12);
        double ang1 = acos( (d12*d12+_c1.r*_c1.r-_c2.r*_c2.r) / (2*d12*_c1.r) );
        double ang2 = acos( (d12*d12+_c2.r*_c2.r-_c1.r*_c1.r) / (2*d12*_c2.r) );
        _area += ang1*_c1.r*_c1.r+ang2*_c2.r*_c2.r;
        return _area;
    }
    
    //得到两个圆的交点p[2]
    //返回值为交点数,-1为两圆重叠。
    int CirAndCir(Circle _c1,Circle _c2,Point p[2])
    {
        if(_c2.r < _c1.r) swap(_c1,_c2); //保证_c2的半径大
        double d12 = Dis(_c1.c,_c2.c);
        if( LT(_c1.r+_c2.r,d12) )//相离
        {
            return 0;
        }
        if( LT(d12+_c1.r, _c2.r) )//包含
        {
            return 0;
        }
        if(_c1.c == _c2.c)//两个圆重叠
        {
            return -1;
        }
        Point u,v;
        double t;
        double r1=_c1.r,r2=_c2.r;
        
        t=( 1+(r1*r1-r2*r2)/(Dis(_c1.c,_c2.c)*Dis(_c1.c,_c2.c)) ) /2;
        u.x = _c1.c.x + (_c2.c.x-_c1.c.x)*t;
        u.y = _c1.c.y + (_c2.c.y-_c1.c.y)*t;
        
        v.x = u.x + _c1.c.y - _c2.c.y;
        v.y = u.y - _c1.c.x + _c2.c.x;
        
        Line _l(u,v);
        return LineToCir(_l,_c1,p);
    }
    
    //求凸包Graham-Scan(GS)算法,复杂度nlog(n),内附两种模式,最小点集凸包,与最大点集凸包。
    //调用GetConvex_GS(Point ps[],int pn,Point cx[],int &cxn)
    //其中ps是输入的点集,pn为ps的大小,cx为返回的凸包集,cxn表示凸包的大小。
    //注意:pn必须>=3,下标都是从0开始,返回的凸包集为逆时针。且如果点带标号,一样处理。
    
    int GScmp(Point a,Point b)
    {
        double _tmp=a*b;
        Point zero;
        zero.x=0;
        zero.y=0;
        if( ZERO(_tmp) )
        {
            return Dis2(a,zero)>Dis2(b,zero);
        }
        return _tmp > 0;
    }
    
    void GetConvex_GS(Point ps[],int pn,Point cx[],int &cxn)
    {
        Polygon pg; pg.clear();
        //先找出最下面,如果有相同的找最靠左,也就找y轴最小的,然后y相同时选x最小。
        Point minp=ps[0];
        for(int i=1;i<pn;i++)
        {
            if( ps[i].y < minp.y )
            {
                minp = ps[i];
            }
            else if(EQ(ps[i].y, minp.y) && ps[i].x < minp.x)
            {
                minp = ps[i];
            }
        }
        
        for(int i=0;i<pn;i++)
        {
            ps[i].x -= minp.x;
            ps[i].y -= minp.y;
            pg.push_back( ps[i] );
        }
        
        //排序
        sort(pg.begin(),pg.end(),GScmp);
        
        //在这一步,除去与minp共线的点。
        long int pgsize=pg.size();
        int pgcnt=1;
        for(int i=1;i<pgsize;i++)
        {
            if( !ZERO(pg[i]*pg[pgcnt-1]) )
            {
                pg[ pgcnt++ ] = pg[i];
            }
        }
        
        cxn = 0;
        cx[ cxn++ ] = minp;
        
        if( !(ZERO(pg[0].x) && ZERO(pg[0].y)) )//不为一点时
        {
            pg[0].x += minp.x;
            pg[0].y += minp.y;
            cx[ cxn++ ] = pg[0];//必须保存id
            
            for(int i=1;i < pgcnt;i++)
            {
                pg[i].x += minp.x;
                pg[i].y += minp.y;
                
                double _tmp = (cx[cxn-1]-cx[cxn-2])*(pg[i]-cx[cxn-1]);
                // 无法处理重复点!
                // nice !
                while( LEQ(_tmp, 0) )
                {
                    cxn--;
                    //if(cxn==1) break;//只剩下一个的时候,退出
                    _tmp = (cx[cxn-1]-cx[cxn-2])*(pg[i]-cx[cxn-1]);
                }
                cx[ cxn++ ] = pg[i];
            }
        }
        //已经找到了,最小凸包集,且为逆时针排序。
        /*
         //接下来步骤为找出所有在凸包边界上的点,并按逆时针排序。
         sort(ps,ps+pn,GScmp);
         int cxn1=0;
         int tj=0;
         for(int i=0;i<pn;i++)
         {
         ps[i].x += minp.x;
         ps[i].y += minp.y;
         Line l(cx[tj],cx[(tj+1)%cxn]);
         if( OnSeg(ps[i], l) )
         {
         ps[ cxn1++ ] = ps[i];
         continue;
         }
         if( tj+1<cxn && GEQ( (cx[tj+1]-minp)*(ps[i]-minp),0 ) )
         {
         tj++;
         }
         l.p1 = cx[ tj ];
         l.p2 = cx[ (tj+1)%cxn ];
         if(OnSeg(ps[i], l)) ps[cxn1++]=ps[i];
         }
         cxn=cxn1;
         for(int i=0;i<cxn1;i++)
         cx[i]=ps[i];
         //接下来的步骤是,将凸包点集调整为逆时针,其实只需要调整斜率最大的一条边。
         tj=1;
         Line l(minp,cx[0]);
         while(tj<cxn && OnSeg(cx[tj], l)) tj++;
         tj--;
         for(int i=0;i<=tj;i++)
         cx[i] = ps[tj-i];
         ////////////////////////////////////
         */
    }
    
    Point BaryCenter(Point p[], int n){
        Point ret = Point(0,0);
        double area = 0;
        for(int i = 1; i < n-1; i++){
            double area2 =fabs( Area(p[0], p[i], p[i+1]) );
            ret.x += (p[0].x+p[i].x + p[i+1].x) / 3 * area2;
            ret.y += (p[0].y+p[i].y + p[i+1].y) / 3 * area2;
            area += area2;
        }
        ret.x /= area;
        ret.y /= area;
        return ret;
    }
    
    /*---------------------代码区---------------------------*/
  • 相关阅读:
    关于“每日代码系列”以及后续计划
    每日代码系列(22)
    每日代码系列(21)
    mvcc
    父进程是1号进程产生大量的僵尸进程的解决方案
    nginx学习之路
    Zookeeper Curator 分布式锁
    jvm垃圾收集器汇总
    MySql分库分表以及相关问题
    Https交互原理
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/5091247.html
Copyright © 2011-2022 走看看