zoukankan      html  css  js  c++  java
  • hdu1174(3维射线与圆是否相交)

    简单的题意,要注意z2 = h2*0.9-r2

    #include <iostream>
    #include <cmath>
    #include <vector>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    using namespace std;
    
    #define MAX_N 110
    
    /*------------------常量区-------------------*/
    
    const double INF        = 1e10;      // 无穷大
    const double EPS        = 1e-8;      // 计算精度
    const double PI         = acos(-1.0);// PI
    const int PINXING       = 0;         // 平行
    const int XIANGJIAO     = 1;         // 相交
    const int XIANGLI       = 0;         // 相离
    const int GONGXIAN      = 2;         // 共线
    const int CHONGDIE      = -1;        // 重叠
    const int INSIDE        = 1;         // 点在图形内部
    const int OUTSIDE       = 0;         // 点在图形外部
    const int BORDER        = 2;         // 点在图形边界
    
    /*-----------------类型定义区----------------*/
    
    struct Point {              // 二维点或矢量
        double x, y;
        //double angle, dis;
        Point() {}
        Point(double x0, double y0): x(x0), y(y0) {}
        void read()
        {
            scanf("%lf%lf",&x,&y);
        }
    };
    
    struct Line {               // 二维的直线或线段
        Point p1, p2;
        Line() {}
        Line(Point p10, Point p20): p1(p10), p2(p20) {}
        void read()
        {
            scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y);
        }
    };
    
    struct Rect {              // 用长宽表示矩形的方法 w, h分别表示宽度和高度
        double w, h;
        Rect() {}
        Rect(double _w,double _h) : w(_w),h(_h) {}
    };
    struct Rect_2 {             // 表示矩形,左下角坐标是(xl, yl),右上角坐标是(xh, yh)
        double xl, yl, xh, yh;
        Rect_2() {}
        Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {}
    };
    struct Circle {            //
        Point c;
        double r;
        Circle() {}
        Circle(Point _c,double _r) :c(_c),r(_r) {}
    };
    
    typedef vector<Point> Polygon;      // 二维多边形
    typedef vector<Point> Points;       // 二维点集
    
    /*-------------------基本函数区---------------------*/
    
    inline double max(double x,double y)
    {
        return x > y ? x : y;
    }
    inline double min(double x, double y)
    {
        return x > y ? y : x;
    }
    inline bool ZERO(double x)              // x == 0
    {
        return (fabs(x) < EPS);
    }
    inline bool ZERO(Point p)               // p == 0
    {
        return (ZERO(p.x) && ZERO(p.y));
    }
    
    inline bool EQ(double x, double y)      // eqaul, x == y
    {
        return (fabs(x - y) < EPS);
    }
    inline bool NEQ(double x, double y)     // not equal, x != y
    {
        return (fabs(x - y) >= EPS);
    }
    inline bool LT(double x, double y)     // less than, x < y
    {
        return ( NEQ(x, y) && (x < y) );
    }
    inline bool GT(double x, double y)     // greater than, x > y
    {
        return ( NEQ(x, y) && (x > y) );
    }
    inline bool LEQ(double x, double y)     // less equal, x <= y
    {
        return ( EQ(x, y) || (x < y) );
    }
    inline bool GEQ(double x, double y)     // greater equal, x >= y
    {
        return ( EQ(x, y) || (x > y) );
    }
    
    // 输出浮点数前,防止输出-0.00调用该函数进行修正!
    inline double FIX(double x)
    {
        return (fabs(x) < EPS) ? 0 : x;
    }
    
    
    
    /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
    //-------------------3D 区域----------------------------//
    
    struct Point3D {            //三维点或矢量
        double x, y, z;
        Point3D() {}
        Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {}
    };
    
    struct Line3D {             // 三维的直线或线段
        Point3D p1, p2;
        Line3D() {}
        Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {}
    };
    
    
    inline bool ZERO(Point3D p)              // p == 0
    {
        return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z));
    }
    
    //////////////////////////////////////////////////////////////////////////////////////
    //三维矢量运算
    bool operator==(Point3D p1, Point3D p2)
    {
        return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) && EQ(p1.z, p2.z) );
    }
    bool operator<(Point3D p1, Point3D p2)
    {
        if (NEQ(p1.x, p2.x)) {
            return (p1.x < p2.x);
        } else if (NEQ(p1.y, p2.y)) {
            return (p1.y < p2.y);
        } else {
            return (p1.z < p2.z);
        }
    }
    Point3D operator+(Point3D p1, Point3D p2)
    {
        return Point3D(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z);
    }
    Point3D operator-(Point3D p1, Point3D p2)
    {
        return Point3D(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);
    }
    Point3D operator*(Point3D p1, Point3D p2) // 计算叉乘 p1 x p2
    {
        return Point3D(p1.y * p2.z - p1.z * p2.y,
                       p1.z * p2.x - p1.x * p2.z,
                       p1.x * p2.y - p1.y * p2.x );
    }
    double operator&(Point3D p1, Point3D p2) { // 计算点积 p1·p2
        return (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z);
    }
    double Norm(Point3D p) // 计算矢量p的模
    {
        return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
    }
    
    //求三维空间中两点间的距离
    double Dis(Point3D p1, Point3D p2)
    {
        return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
    }
    // 求三维空间中点到直线的距离
    double Dis(Point3D p, Line3D L)
    {
        if(L.p1==L.p2) return Dis(p, L.p1);
        return Norm((p - L.p1) * (L.p2 - L.p1)) / Norm(L.p2 - L.p1);
    }
    
    bool OnLine(Point3D p, Line3D L) // 判断三维空间中点p是否在直线L上
    {
        if(L.p1==L.p2 && p==L.p1) return true;//共点时,返回true
        return ZERO( (p - L.p1) * (L.p2 - L.p1) );
    }
    bool OnLineSeg(Point3D p, Line3D L) // 判断三维空间中点p是否在线段l上
    {
        return ( ZERO((L.p1 - p) * (L.p2 - p)) &&
                EQ( Norm(p - L.p1) + Norm(p - L.p2), Norm(L.p2 - L.p1)) );
    }
    
    //////////////////////////////////////////////////////////////////////////////////////
    
    
    /*---------------------代码区---------------------------*/
    
    
    
    int main(int argc, const char * argv[]) {
        int T;
        cin>>T;
        while(T--)
        {
            double h1,r1,x1,y1,z1;
            cin>>h1>>r1>>x1>>y1>>z1;
            z1 += h1-r1;
            double h2,r2,x2,y2,z2;
            double x3,y3,z3;
            cin>>h2>>r2>>x2>>y2>>z2;
            cin>>x3>>y3>>z3;
            z2 += h2*0.9-r2;
            
            Point3D p(x1,y1,z1);
            Point3D p1(x2,y2,z2),p2(x2+100*x3,y2+100*y3,z2+100*z3);
            if( LEQ(Dis(p, p1), r1) )
            {
                printf("YES
    ");
                continue;
            }
            Line3D l(p1,p2);
            double dis=Dis(p,l);
            if( GT( dis,r1 ) )
            {
                printf("NO
    ");
            }
            else
            {
                Point3D p3(x3,y3,z3);
                //然后判断射线与球相交.
                if( LEQ( ((p1-p)&p3),0 ) )
                {
                    printf("YES
    ");
                }
                else printf("NO
    ");
            }
        }
        return 0;
    }
  • 相关阅读:
    windows下Qt5.1.0配置android环境搭建 good
    Qt Focus事件,FocusInEvent()与FocusOutEvent()
    Python框架之Django
    WITH (NOLOCK)浅析
    区域、模板页与WebAPI初步
    对象映射工具AutoMapper介绍
    .NET大型B2C开源项目nopcommerce解析——项目结构
    企业管理系统集成
    oracle中sql语句的优化
    C#可扩展编程之MEF
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/5167865.html
Copyright © 2011-2022 走看看