最大权闭合图完美的解决了网络流中,对节点间>1的依赖关系。
hdu 5845 (二分+最大权闭合图)
#include <math.h> #include <time.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <set> #include <map> #include <string> #include <stack> #include <queue> #include <vector> #include <bitset> #include <iostream> #include <algorithm> #define pb push_back #define fi first #define se second #define icc(x) (1<<(x)) #define lcc(x) (1ll<<(x)) #define lowbit(x) (x&-x) #define debug(x) cout<<#x<<"="<<x<<endl #define rep(i,s,t) for(int i=s;i<t;++i) #define per(i,s,t) for(int i=t-1;i>=s;--i) #define mset(g, x) memset(g, x, sizeof(g)) using namespace std; typedef long long ll; typedef unsigned long long ull; typedef unsigned int ui; typedef double db; typedef pair<int,int> pii; typedef pair<ll,ll> pll; typedef vector<int> veci; const int mod=(int)1e9+7,inf=0x3fffffff,rx[]={-1,0,1,0},ry[]={0,1,0,-1}; const ll INF=1ll<<60; const db pi=acos(-1),eps=1e-8; template<class T> void rd(T &res){ res = 0; int ch,sign=0; while( (ch=getchar())!='-' && !(ch>='0'&&ch<='9')); if(ch == '-') sign = 1; else res = ch-'0'; while((ch=getchar())>='0'&&ch<='9') res = (res<<3)+(res<<1)+ch-'0'; res = sign?-res:res; } template<class T>void rec_pt(T x){ if(!x)return; rec_pt(x/10); putchar(x%10^48); } template<class T>void pt(T x){ if(x<0) putchar('-'),x=-x; if(!x)putchar('0'); else rec_pt(x); } template<class T>inline void ptn(T x){ pt(x),putchar(' '); } template<class T>inline void Max(T &a,T b){ if(b>a)a=b; } template<class T>inline void Min(T &a,T b){ if(b<a)a=b; } template<class T>inline T mgcd(T b,T d){ return b?mgcd(d%b,b):d; }//gcd模板,传入的参数必须是用一类型 //-------------------------------主代码--------------------------------------// //网络流SAP模板,复杂度O(N^2*M) //使用前调用init(源点,汇点,图中点的个数),然后调用add_edge()加边 //调用getflow得出最大流 #define N 404 #define M 2*N*N struct Max_Flow { struct node { int to,w,next; }edge[M]; int s,t; int nn; int cnt,pre[N]; int lv[N],gap[N]; void init(int ss,int tt,int num) { s=ss; t=tt; nn = num;// cnt=0; memset(pre,-1,sizeof(pre)); } void add_edge(int u,int v,int w)//同时建两条边 { edge[cnt].to=v; edge[cnt].w=w; edge[cnt].next=pre[u]; pre[u]=cnt++; edge[cnt].to=u; edge[cnt].w=0; edge[cnt].next=pre[v]; pre[v]=cnt++; } int sdfs(int k,int w) { if(k==t) return w; int f=0; int mi=nn-1; for(int p=pre[k];p!=-1;p=edge[p].next) { int v=edge[p].to,tw=edge[p].w; if(tw!=0) { if(lv[k]==lv[v]+1) { int tmp=sdfs(v,min(tw,w-f)); f+=tmp; edge[p].w-=tmp; edge[p^1].w+=tmp; if(f==w||lv[s]==nn) break; } if(lv[v]<mi) mi=lv[v]; } } if(f==0) { gap[lv[k]]--; if( gap[ lv[k] ]==0 ) { lv[s]=nn; } lv[k]=mi+1; gap[lv[k]]++; } return f; } int getflow() { int sum=0; memset(lv,0,sizeof(lv)); memset(gap,0,sizeof(gap)); gap[0]=nn; while(lv[s]<nn) { sum+=sdfs(s,inf); } return sum; } }ff; int pay[202],pro[202],costtime[202]; int mat[202][202]; int mark[202]; int main() { int T; rd(T); int tt = 1; while (T--) { int n,m,L; rd(n),rd(m),rd(L); int b = 0,d = 1e9+1; rep(i, 1, n+1){ rd(pay[i]); rd(costtime[i]); } mset(mat, 0); rep(i, 1, m+1){ rd(pro[i]); int k; rd(k); rep(j, 0, k){ int tmp; rd(tmp); mat[i][tmp] = 1; } } int sum = 0; int ans = 0; while(b < d){ int mid = (b+d)/2; mset(mark, 0); ff.init(0, n+m+1, n+m+2); rep(i, 1, n+1){ if(costtime[i]<=mid){ ff.add_edge(m+i, n+m+1, pay[i]); mark[i] = 1; } } sum = 0; rep(i, 1, m+1){ int flag = 0; rep(j, 1, n+1){ if(mat[i][j]==1 && mark[j]==0){ flag = 1; break; } } if(flag == 0) { sum += pro[i]; ff.add_edge(0, i, pro[i]); rep(j, 1, n+1){ if(mat[i][j] == 1){ ff.add_edge(i, m+j, inf); } } } } int flow = ff.getflow(); sum -= flow; if(sum>=L) d = mid,ans = sum; else b = mid+1; } printf("Case #%d: ",tt++); if(b >= 1e9+1){ printf("impossible "); }else { pt(b); putchar(' '); ptn(ans); } } return 0; }