WordCount Example
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
WordCount example reads text files and counts how often words occur. The input is text files and the output is text files, each line of which contains a word and the count of how often it occured, separated by a tab.Each mapper takes a line as input and breaks it into words. It then emits a key/value pair of the word and 1. Each reducer sums the counts for each word and emits a single key/value with the word and sum.
As an optimization, the reducer is also used as a combiner on the map outputs. This reduces the amount of data sent across the network by combining each word into a single record.
该例子是用于读取文本文件并且统计单词的频率.输入的是文本文件并且输出的也是文本文件,它每一行包含一个单词和这个单词在文本出现的次数 ,atab.each分离取得一行作为输出并且分离成多个单词.它因此释放出一对key /value 的单词和1.
每一个reduce每一个单词的总和并且释放出一个唯一的key/value.作为一个优化,这个reducer同样也用于汇合这个map的输出。 这个reduces将这些大量的数据通过网络进行汇集,将每一个单词汇集成一个单一的记录。(非常的拗口)
To run the example, the command syntax is
bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir> <out-dir>
All of the files in the input directory (called in-dir in the command line above) are read and the counts of words in the input are written to the output directory (called out-dir above). It is assumed that both inputs and outputs are stored in HDFS (see ImportantConcepts). If your input is not already in HDFS, but is rather in a local file system somewhere, you need to copy the data into HDFS using a command like this:
bin/hadoop dfs -mkdir <hdfs-dir>
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>
As of version 0.17.2.1, you only need to run a command like this:
bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>