原文:http://blog.csdn.net/hejjunlin/article/details/51159419
工作一段时间后,经常会被领导说,你这个进入速度太慢了,竞品的进入速度很快,你搞下优化吧?每当这时,你会怎么办?功能实现都有啊,进入时要加载那么多view,这也没办法啊,等等。
先看一些现象吧:用Android studio,新建一个Activity自动生成的布局文件都是RelativeLayout,或许你会认为这是IDE的默认设置问题,其实不然,这是由 android-sdk ools emplatesactivitiesEmptyActivity oot eslayoutactivity_simple.xml.ftl 这个文件事先就定好了的,也就是说这是Google的选择,而非IDE的选择。那SDK为什么会默认给开发者新建一个默认的RelativeLayout布局呢?当然是因为RelativeLayout的性能更优,性能至上嘛。但是我们再看看默认新建的这个RelativeLayout的父容器,也就是当前窗口的顶级View——DecorView,它却是个垂直方向的LinearLayout,上面是标题栏,下面是内容栏。那么问题来了,Google为什么给开发者默认新建了个RelativeLayout,而自己却偷偷用了个LinearLayout,到底谁的性能更高,开发者该怎么选择呢?
View的一些基本工作原理
先通过几个问题,简单的了解写android中View的工作原理吧。
View是什么?
简单来说,View是Android系统在屏幕上的视觉呈现,也就是说你在手机屏幕上看到的东西都是View。
View是怎么绘制出来的?
View的绘制流程是从ViewRoot的performTraversals()方法开始,依次经过measure(),layout()和draw()三个过程才最终将一个View绘制出来。
View是怎么呈现在界面上的?
Android中的视图都是通过Window来呈现的,不管Activity、Dialog还是Toast它们都有一个Window,然后通过WindowManager来管理View。Window和顶级View——DecorView的通信是依赖ViewRoot完成的。
View和ViewGroup什么区别?
不管简单的Button和TextView还是复杂的RelativeLayout和ListView,他们的共同基类都是View。所以说,View是一种界面层控件的抽象,他代表了一个控件。那ViewGroup是什么东西,它可以被翻译成控件组,即一组View。ViewGroup也是继承View,这就意味着View本身可以是单个控件,也可以是多个控件组成的控件组。根据这个理论,Button显然是个View,而RelativeLayout不但是一个View还可以是一个ViewGroup,而ViewGroup内部是可以有子View的,这个子View同样也可能是ViewGroup,以此类推。
RelativeLayout和LinearLayout性能PK
基于以上原理和大背景,我们要探讨的性能问题,说的简单明了一点就是:当RelativeLayout和LinearLayout分别作为ViewGroup,表达相同布局时绘制在屏幕上时谁更快一点。上面已经简单说了View的绘制,从ViewRoot的performTraversals()方法开始依次调用perfromMeasure、performLayout和performDraw这三个方法。这三个方法分别完成顶级View的measure、layout和draw三大流程,其中perfromMeasure会调用measure,measure又会调用onMeasure,在onMeasure方法中则会对所有子元素进行measure,这个时候measure流程就从父容器传递到子元素中了,这样就完成了一次measure过程,接着子元素会重复父容器的measure,如此反复就完成了整个View树的遍历。同理,performLayout和performDraw也分别完成perfromMeasure类似的流程。通过这三大流程,分别遍历整棵View树,就实现了Measure,Layout,Draw这一过程,View就绘制出来了。那么我们就分别来追踪下RelativeLayout和LinearLayout这三大流程的执行耗时。
如下图,我们分别用两用种方式简单的实现布局测试下
LinearLayout
Measure:0.762ms
Layout:0.167ms
draw:7.665ms
RelativeLayout
Measure:2.180ms
Layout:0.156ms
draw:7.694ms
从这个数据来看无论使用RelativeLayout还是LinearLayout,layout和draw的过程两者相差无几,考虑到误差的问题,几乎可以认为两者不分伯仲,关键是Measure的过程RelativeLayout却比LinearLayout慢了一大截。
Measure都干什么了
RelativeLayout的onMeasure()方法
@Override protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { if (mDirtyHierarchy) { mDirtyHierarchy = false; sortChildren(); } int myWidth = -1; int myHeight = -1; int width = 0; int height = 0; final int widthMode = MeasureSpec.getMode(widthMeasureSpec); final int heightMode = MeasureSpec.getMode(heightMeasureSpec); final int widthSize = MeasureSpec.getSize(widthMeasureSpec); final int heightSize = MeasureSpec.getSize(heightMeasureSpec); // Record our dimensions if they are known; if (widthMode != MeasureSpec.UNSPECIFIED) { myWidth = widthSize; } if (heightMode != MeasureSpec.UNSPECIFIED) { myHeight = heightSize; } if (widthMode == MeasureSpec.EXACTLY) { width = myWidth; } if (heightMode == MeasureSpec.EXACTLY) { height = myHeight; } View ignore = null; int gravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK; final boolean horizontalGravity = gravity != Gravity.START && gravity != 0; gravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK; final boolean verticalGravity = gravity != Gravity.TOP && gravity != 0; int left = Integer.MAX_VALUE; int top = Integer.MAX_VALUE; int right = Integer.MIN_VALUE; int bottom = Integer.MIN_VALUE; boolean offsetHorizontalAxis = false; boolean offsetVerticalAxis = false; if ((horizontalGravity || verticalGravity) && mIgnoreGravity != View.NO_ID) { ignore = findViewById(mIgnoreGravity); } final boolean isWrapContentWidth = widthMode != MeasureSpec.EXACTLY; final boolean isWrapContentHeight = heightMode != MeasureSpec.EXACTLY; // We need to know our size for doing the correct computation of children positioning in RTL // mode but there is no practical way to get it instead of running the code below. // So, instead of running the code twice, we just set the width to a "default display width" // before the computation and then, as a last pass, we will update their real position with // an offset equals to "DEFAULT_WIDTH - width". final int layoutDirection = getLayoutDirection(); if (isLayoutRtl() && myWidth == -1) { myWidth = DEFAULT_WIDTH; } View[] views = mSortedHorizontalChildren; int count = views.length; for (int i = 0; i < count; i++) { View child = views[i]; if (child.getVisibility() != GONE) { LayoutParams params = (LayoutParams) child.getLayoutParams(); int[] rules = params.getRules(layoutDirection); applyHorizontalSizeRules(params, myWidth, rules); measureChildHorizontal(child, params, myWidth, myHeight); if (positionChildHorizontal(child, params, myWidth, isWrapContentWidth)) { offsetHorizontalAxis = true; } } } views = mSortedVerticalChildren; count = views.length; final int targetSdkVersion = getContext().getApplicationInfo().targetSdkVersion; for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE) { final LayoutParams params = (LayoutParams) child.getLayoutParams(); applyVerticalSizeRules(params, myHeight, child.getBaseline()); measureChild(child, params, myWidth, myHeight); if (positionChildVertical(child, params, myHeight, isWrapContentHeight)) { offsetVerticalAxis = true; } if (isWrapContentWidth) { if (isLayoutRtl()) { if (targetSdkVersion < Build.VERSION_CODES.KITKAT) { width = Math.max(width, myWidth - params.mLeft); } else { width = Math.max(width, myWidth - params.mLeft - params.leftMargin); } } else { if (targetSdkVersion < Build.VERSION_CODES.KITKAT) { width = Math.max(width, params.mRight); } else { width = Math.max(width, params.mRight + params.rightMargin); } } } if (isWrapContentHeight) { if (targetSdkVersion < Build.VERSION_CODES.KITKAT) { height = Math.max(height, params.mBottom); } else { height = Math.max(height, params.mBottom + params.bottomMargin); } } if (child != ignore || verticalGravity) { left = Math.min(left, params.mLeft - params.leftMargin); top = Math.min(top, params.mTop - params.topMargin); } if (child != ignore || horizontalGravity) { right = Math.max(right, params.mRight + params.rightMargin); bottom = Math.max(bottom, params.mBottom + params.bottomMargin); } } } // Use the top-start-most laid out view as the baseline. RTL offsets are // applied later, so we can use the left-most edge as the starting edge. View baselineView = null; LayoutParams baselineParams = null; for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE) { final LayoutParams childParams = (LayoutParams) child.getLayoutParams(); if (baselineView == null || baselineParams == null || compareLayoutPosition(childParams, baselineParams) < 0) { baselineView = child; baselineParams = childParams; } } } mBaselineView = baselineView; if (isWrapContentWidth) { // Width already has left padding in it since it was calculated by looking at // the right of each child view width += mPaddingRight; if (mLayoutParams != null && mLayoutParams.width >= 0) { width = Math.max(width, mLayoutParams.width); } width = Math.max(width, getSuggestedMinimumWidth()); width = resolveSize(width, widthMeasureSpec); if (offsetHorizontalAxis) { for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE) { final LayoutParams params = (LayoutParams) child.getLayoutParams(); final int[] rules = params.getRules(layoutDirection); if (rules[CENTER_IN_PARENT] != 0 || rules[CENTER_HORIZONTAL] != 0) { centerHorizontal(child, params, width); } else if (rules[ALIGN_PARENT_RIGHT] != 0) { final int childWidth = child.getMeasuredWidth(); params.mLeft = width - mPaddingRight - childWidth; params.mRight = params.mLeft + childWidth; } } } } } if (isWrapContentHeight) { // Height already has top padding in it since it was calculated by looking at // the bottom of each child view height += mPaddingBottom; if (mLayoutParams != null && mLayoutParams.height >= 0) { height = Math.max(height, mLayoutParams.height); } height = Math.max(height, getSuggestedMinimumHeight()); height = resolveSize(height, heightMeasureSpec); if (offsetVerticalAxis) { for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE) { final LayoutParams params = (LayoutParams) child.getLayoutParams(); final int[] rules = params.getRules(layoutDirection); if (rules[CENTER_IN_PARENT] != 0 || rules[CENTER_VERTICAL] != 0) { centerVertical(child, params, height); } else if (rules[ALIGN_PARENT_BOTTOM] != 0) { final int childHeight = child.getMeasuredHeight(); params.mTop = height - mPaddingBottom - childHeight; params.mBottom = params.mTop + childHeight; } } } } } if (horizontalGravity || verticalGravity) { final Rect selfBounds = mSelfBounds; selfBounds.set(mPaddingLeft, mPaddingTop, width - mPaddingRight, height - mPaddingBottom); final Rect contentBounds = mContentBounds; Gravity.apply(mGravity, right - left, bottom - top, selfBounds, contentBounds, layoutDirection); final int horizontalOffset = contentBounds.left - left; final int verticalOffset = contentBounds.top - top; if (horizontalOffset != 0 || verticalOffset != 0) { for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE && child != ignore) { final LayoutParams params = (LayoutParams) child.getLayoutParams(); if (horizontalGravity) { params.mLeft += horizontalOffset; params.mRight += horizontalOffset; } if (verticalGravity) { params.mTop += verticalOffset; params.mBottom += verticalOffset; } } } } } if (isLayoutRtl()) { final int offsetWidth = myWidth - width; for (int i = 0; i < count; i++) { final View child = views[i]; if (child.getVisibility() != GONE) { final LayoutParams params = (LayoutParams) child.getLayoutParams(); params.mLeft -= offsetWidth; params.mRight -= offsetWidth; } } } setMeasuredDimension(width, height); }
根据源码我们发现RelativeLayout会对子View做两次measure。这是为什么呢?首先RelativeLayout中子View的排列方式是基于彼此的依赖关系,而这个依赖关系可能和布局中View的顺序并不相同,在确定每个子View的位置的时候,就需要先给所有的子View排序一下。又因为RelativeLayout允许A,B 2个子View,横向上B依赖A,纵向上A依赖B。所以需要横向纵向分别进行一次排序测量。
LinearLayout的onMeasure()方法
@Override protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { if (mOrientation == VERTICAL) { measureVertical(widthMeasureSpec, heightMeasureSpec); } else { measureHorizontal(widthMeasureSpec, heightMeasureSpec); } }
与RelativeLayout相比LinearLayout的measure就简单明了的多了,先判断线性规则,然后执行对应方向上的测量。随便看一个吧。
for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child == null) { mTotalLength += measureNullChild(i); continue; } if (child.getVisibility() == View.GONE) { i += getChildrenSkipCount(child, i); continue; } if (hasDividerBeforeChildAt(i)) { mTotalLength += mDividerHeight; } LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams(); totalWeight += lp.weight; if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) { // Optimization: don't bother measuring children who are going to use // leftover space. These views will get measured again down below if // there is any leftover space. final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin); } else { int oldHeight = Integer.MIN_VALUE; if (lp.height == 0 && lp.weight > 0) { // heightMode is either UNSPECIFIED or AT_MOST, and this // child wanted to stretch to fill available space. // Translate that to WRAP_CONTENT so that it does not end up // with a height of 0 oldHeight = 0; lp.height = LayoutParams.WRAP_CONTENT; } // Determine how big this child would like to be. If this or // previous children have given a weight, then we allow it to // use all available space (and we will shrink things later // if needed). measureChildBeforeLayout( child, i, widthMeasureSpec, 0, heightMeasureSpec, totalWeight == 0 ? mTotalLength : 0); if (oldHeight != Integer.MIN_VALUE) { lp.height = oldHeight; } final int childHeight = child.getMeasuredHeight(); final int totalLength = mTotalLength; mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin + lp.bottomMargin + getNextLocationOffset(child)); if (useLargestChild) { largestChildHeight = Math.max(childHeight, largestChildHeight); } }
父视图在对子视图进行measure操作的过程中,使用变量mTotalLength保存已经measure过的child所占用的高度,该变量刚开始时是0。在for循环中调用measureChildBeforeLayout()对每一个child进行测量,该函数实际上仅仅是调用了measureChildWithMargins(),在调用该方法时,使用了两个参数。其中一个是heightMeasureSpec,该参数为LinearLayout本身的measureSpec;另一个参数就是mTotalLength,代表该LinearLayout已经被其子视图所占用的高度。 每次for循环对child测量完毕后,调用child.getMeasuredHeight()获取该子视图最终的高度,并将这个高度添加到mTotalLength中。在本步骤中,暂时避开了lp.weight>0的子视图,即暂时先不测量这些子视图,因为后面将把父视图剩余的高度按照weight值的大小平均分配给相应的子视图。源码中使用了一个局部变量totalWeight累计所有子视图的weight值。处理lp.weight>0的情况需要注意,如果变量heightMode是EXACTLY,那么,当其他子视图占满父视图的高度后,weight>0的子视图可能分配不到布局空间,从而不被显示,只有当heightMode是AT_MOST或者UNSPECIFIED时,weight>0的视图才能优先获得布局高度。最后我们的结论是:如果不使用weight属性,LinearLayout会在当前方向上进行一次measure的过程,如果使用weight属性,LinearLayout会避开设置过weight属性的view做第一次measure,完了再对设置过weight属性的view做第二次measure。由此可见,weight属性对性能是有影响的,而且本身有大坑,请注意避让。
小结
从源码中我们似乎能看出,我们先前的测试结果中RelativeLayout不如LinearLayout快的根本原因是RelativeLayout需要对其子View进行两次measure过程。而LinearLayout则只需一次measure过程,所以显然会快于RelativeLayout,但是如果LinearLayout中有weight属性,则也需要进行两次measure,但即便如此,应该仍然会比RelativeLayout的情况好一点。
RelativeLayout另一个性能问题
对比到这里就结束了嘛?显然没有!我们再看看View的Measure()方法都干了些什么?
public final void measure(int widthMeasureSpec, int heightMeasureSpec) { if ((mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT || widthMeasureSpec != mOldWidthMeasureSpec || heightMeasureSpec != mOldHeightMeasureSpec) { ...... } mOldWidthMeasureSpec = widthMeasureSpec; mOldHeightMeasureSpec = heightMeasureSpec; mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 | (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension }
View的measure方法里对绘制过程做了一个优化,如果我们或者我们的子View没有要求强制刷新,而父View给子View的传入值也没有变化(也就是说子View的位置没变化),就不会做无谓的measure。但是上面已经说了RelativeLayout要做两次measure,而在做横向的测量时,纵向的测量结果尚未完成,只好暂时使用myHeight传入子View系统,假如子View的Height不等于(设置了margin)myHeight的高度,那么measure中上面代码所做得优化将不起作用,这一过程将进一步影响RelativeLayout的绘制性能。而LinearLayout则无这方面的担忧。解决这个问题也很好办,如果可以,尽量使用padding代替margin。
FrameLayout和LinearLayout性能PK
LinearLayout
Measure:2.058ms
Layout:0.296ms
draw:3.857ms
FrameLayout
Measure:1.334ms
Layout:0.213ms
draw:3.680ms
从这个数据来使用LinearLayout,仅嵌套一个LinearLayou,在onMeasure就相关2倍时间和FrameLayout相比,layout和draw的过程两者相差无几,考虑到误差的问题,几乎可以认为两者不分伯仲
看下FrameLayout的源码,做了什么?
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { int count = getChildCount(); final boolean measureMatchParentChildren = MeasureSpec.getMode(widthMeasureSpec) != MeasureSpec.EXACTLY || MeasureSpec.getMode(heightMeasureSpec) != MeasureSpec.EXACTLY; //当FrameLayout的宽和高,只有同时设置为match_parent或者指定的size,那么这个 //measureMatchParentChlidren = false,否则为true。下面会用到这个变量 mMatchParentChildren.clear(); int maxHeight = 0; int maxWidth = 0; int childState = 0; //宽高的期望类型 for (int i = 0; i < count; i++) { //一次遍历每一个不为GONE的子view final View child = getChildAt(i); if (mMeasureAllChildren || child.getVisibility() != GONE) { //去掉FrameLayout的左右padding,子view的左右margin,这时候,再去 //计算子view的期望的值 measureChildWithMargins(child, widthMeasureSpec, 0, heightMeasureSpec, 0); final LayoutParams lp = (LayoutParams) child.getLayoutParams(); /*maxWidth找到子View中最大的宽,高同理,为什么要找到他,因为在这里,FrameLayout是wrap -content.他的宽高肯定受子view的影响*/ maxWidth = Math.max(maxWidth, child.getMeasuredWidth() + lp.leftMargin + lp.rightMargin); maxHeight = Math.max(maxHeight, child.getMeasuredHeight() + lp.topMargin + lp.bottomMargin); childState = combineMeasuredStates(childState, child.getMeasuredState()); /*下面的判断,只有上面的FragLayout的width和height都设置为match_parent 才不会执行 此处的mMatchParentChlidren的list里存的是设置为match_parent的子view。 结合上面两句话的意思,当FrameLayout设置为wrap_content,这时候要把所有宽高设置为 match_parent的子View都记录下来,记录下来干什么呢? 这时候FrameLayout的宽高同时受子View的影响*/ if (measureMatchParentChildren) { if (lp.width == LayoutParams.MATCH_PARENT || lp.height == LayoutParams.MATCH_PARENT) { mMatchParentChildren.add(child); } } } } // Account for padding too maxWidth += getPaddingLeftWithForeground() + getPaddingRightWithForeground(); maxHeight += getPaddingTopWithForeground() + getPaddingBottomWithForeground(); // Check against our minimum height and width maxHeight = Math.max(maxHeight, getSuggestedMinimumHeight()); maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth()); // Check against our foreground's minimum height and width final Drawable drawable = getForeground(); if (drawable != null) { maxHeight = Math.max(maxHeight, drawable.getMinimumHeight()); maxWidth = Math.max(maxWidth, drawable.getMinimumWidth()); } //设置测量过的宽高 setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState), resolveSizeAndState(maxHeight, heightMeasureSpec, childState << MEASURED_HEIGHT_STATE_SHIFT)); count = mMatchParentChildren.size();//这个大小就是子view中设定为match_parent的个数 if (count > 1) { for (int i = 0; i < count; i++) { //这里看上去重新计算了一遍 final View child = mMatchParentChildren.get(i); final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams(); int childWidthMeasureSpec; int childHeightMeasureSpec; /*如果子view的宽是match_parent,则宽度期望值是总宽度-padding-margin 如果子view的宽是指定的比如100dp,则宽度期望值是padding+margin+width 这个很容易理解,下面的高同理*/ if (lp.width == LayoutParams.MATCH_PARENT) { childWidthMeasureSpec = MeasureSpec.makeMeasureSpec(getMeasuredWidth() - getPaddingLeftWithForeground() - getPaddingRightWithForeground() - lp.leftMargin - lp.rightMargin, MeasureSpec.EXACTLY); } else { childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec, getPaddingLeftWithForeground() + getPaddingRightWithForeground() + lp.leftMargin + lp.rightMargin, lp.width); } if (lp.height == LayoutParams.MATCH_PARENT) { childHeightMeasureSpec = MeasureSpec.makeMeasureSpec(getMeasuredHeight() - getPaddingTopWithForeground() - getPaddingBottomWithForeground() - lp.topMargin - lp.bottomMargin, MeasureSpec.EXACTLY); } else { childHeightMeasureSpec = getChildMeasureSpec(heightMeasureSpec, getPaddingTopWithForeground() + getPaddingBottomWithForeground() + lp.topMargin + lp.bottomMargin, lp.height); } //把这部分子view重新计算大小 child.measure(childWidthMeasureSpec, childHeightMeasureSpec); } } }
加了一个嵌套,onMeasure时间,多了将近一倍,原因在于:LinearLayout在某一方向onMeasure,发现还存在LinearLayout。将触发
if (useLargestChild && (heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) { mTotalLength = 0; for (int i = 0; i < count; ++i) { final View child = getVirtualChildAt(i); if (child == null) { mTotalLength += measureNullChild(i); continue; } if (child.getVisibility() == GONE) { i += getChildrenSkipCount(child, i); continue; } }
结论
1.RelativeLayout会让子View调用2次onMeasure,LinearLayout 在有weight时,也会调用子View2次onMeasure
2.RelativeLayout的子View如果高度和RelativeLayout不同,则会引发效率问题,当子View很复杂时,这个问题会更加严重。如果可以,尽量使用padding代替margin。
3.在不影响层级深度的情况下,使用LinearLayout和FrameLayout而不是RelativeLayout。
最后再思考一下文章开头那个矛盾的问题,为什么Google给开发者默认新建了个RelativeLayout,而自己却在DecorView中用了个LinearLayout。因为DecorView的层级深度是已知而且固定的,上面一个标题栏,下面一个内容栏。采用RelativeLayout并不会降低层级深度,所以此时在根节点上用LinearLayout是效率最高的。而之所以给开发者默认新建了个RelativeLayout是希望开发者能采用尽量少的View层级来表达布局以实现性能最优,因为复杂的View嵌套对性能的影响会更大一些。
4.能用两层LinearLayout,尽量用一个RelativeLayout,在时间上此时RelativeLayout耗时更小。另外LinearLayout慎用layout_weight,也将会增加一倍耗时操作。由于使用LinearLayout的layout_weight,大多数时间是不一样的,这会降低测量的速度。这只是一个如何合理使用Layout的案例,必要的时候,你要小心考虑是否用layout weight。总之减少层级结构,才是王道,让onMeasure做延迟加载,用viewStub,include等一些技巧。