zoukankan      html  css  js  c++  java
  • 《人工智能》总结

    总结

    人工智能无处不在,比如现在已经有了智能搜索、智能推荐、自动驾驶、仓库机器人、AI助手、人脸安防、机器翻译、AI作画作曲作新闻等等。

    我们经常跟风说着人工智能,但是有没有仔细想过这样的问题:

    • 什么是人工智能?
    • 别人经常说的机器学习、深度学习是什么?
    • 人工智能会毁灭人类吗?
    • 人工智能不能做什么?
    • 人工智能时代应该学什么才不会被淘汰?

    以下内容由chenqionghe倾情总结~

    一、什么是人工智能

    1. 完成人们不认为机器能完成的事

    比如下围棋、人脸识别、自动驾驶

    2. 与人类思考方式或行为相似的程序

    这是一种仿生学的思路,模仿大脑神经元对刺激的处理和传播过程
    早在通用电子计算机出现之前,科学家们就提出了有关神经元处理信息的假想模型。

    人类大脑中的数量庞大的神经元共同组成一个相互协作的网络结构,信息通过若干层神经元的增强、衰减或屏蔽处理后,作为系统的输出信号,控制人体对环境刺激的反应。

    3. 会学习的程序

    人的智慧离不开长大成人过程里的不间断学习。今天最典型的人工智能可以被看成是模拟了人类学习和成长的全过程。

    感知环境,做出合理的行动,获得最大收益的计算机程序

    二、别人经常说的机器学习、深度学习是什么

    机器学习

    计算机通过反复训练数据,总结出规律,就叫“机器学习”。比如:反复看图,学会认字。

    相关专业术语:

    • 训练数据集。计算机算机用来反复学习的数据
    • 特征。一类数据区别于另一类数据的属性或特质。
    • 建模。总结规律的过程
    • 模型。总结出的规律

    深度学习

    深度学习是基于多层神经网络的机器学习模型,有两个最基本前提:

    1. 强大的计算能力
    2. 高质量的大数据

    本质是模拟人类大脑中的神经元相互协作的网络结构,信息通过若干层神经元的增强、衰减或屏蔽处理后,作为系统的输出信号。
    深度神经网络内部,每层神经元的输出信号可能相当复杂,复杂到编程者并不一定清楚这些中间信号在自然语言中的真实含义,但是这不重要,重要的是整个模型可以聪明地工作,最终结果看起来就像人做的一样。

    可以用通俗的水管网络例子理解

    通俗例子:水管网络

    一、比如我们要识别汉字“田”

    • 预先在水管网络的每个出口插一块字牌,对应我们想让计算机认识的汉字。
    • 将“田”字变成的一大堆数字组成的水流,灌进水管网络。
    • 通过调节输入端的每层的每一个流量阀,最终保证让“田字”的出口流出的水最多

    二、比如我们再识别汉字“申”

    • 用类似的方法,把每一张写有“申”字的图片变成一大堆数字组成的水流,灌进水管网络。
    • 看一看是不是写有“申”字的那个管道出口流出来的水最多,如果不是再次调整所有的调节阀。不同的是,这次既要保证刚才学过的“田”字不受影响,也要保证新的“申”字可以被正确处理。

    三、识别更多的字,得出模型

    • 当大量识字卡片被这个管道网络处理,所有阀门都调节到位后,整套水管网络就可以用来识别汉字了。
      这时,我们可以把调节好的所有阀门都“焊死”,静候新的水流到来。

    指导深度学习的基本是一种实用主义的思想,要理解更复杂的世界规律,就不断增加水管网络里可调节的阀门的个数(增加层数或增加每层的调节阀数量),让计算机在拼命调节无数个阀门的过程中,学到训练数据中的隐藏规律。(有史以来最有效的机器学习方法,竟是一个只可意会、不可言传的“黑盒子”)

    这引出一个问题

    如果人们只知道计算机学会了做什么,却说不清计算机在学习过程中掌握的是一种什么样的规律,那这种学习本身会不会失控?

    三、人工智能会毁灭人类吗

    现在我们的人工智能可以理解成一个巨大的Excel表,通过深度学习黑盒计算得出一列新的数据。
    它是单一领域,弱的人工智能,离强人工智能还差得很远,但是可预知的是:强人工智能一旦出现,人类就必须认真考虑自己的命运问题了,因为从强人工智能“进化”到超人工智能,对机器而言,也许只是几个小时的事情。

    因为一个可以像人一样学习各种知识的计算机,它一定有这样的特点

    1. 学习速度比人快无数倍
    2. 记忆力一定是过目不忘
    3. 可以从互联网上接触到世界上的全部知识
    4. 永不疲倦,无休止地学习迭代

    这样的机器比人类所有科学家都厉害,一旦出现,人类肯定是会毁灭的。

    霍金说

    人工智能可以在自身基础上进化,可以一直保持加速度的趋势,不断重新设计自己。而人类,我们的生物进化速度相当有限,无法与之竞争,终将被淘汰。

    埃隆·马斯克说:

    我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁,恐怕就是人工智能了。

    四、人工智能不能做什么?

    1. 跨领域能力

    人类强大的跨领域联想、类比能力是跨领域推理的基础

    2. 抽象能力

    一个三四岁的小孩子看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩子也十有八九能做出那是一辆自行车的判断。
    而目前的计算机视觉系统辨别出什么是自行车,需要至少数百万张或更多自行车的照片后,才能识别,这种需要大量训练照片的学习方式看上去还比较笨拙。

    人类的学习过程往往不需要大规模的训练数据。人类可以用自己卓越的抽象能力,仅凭少数个例,就归纳出可以举一反三的规则、原理,甚至更高层次上的思维模式、哲学内涵等。这一差别给人类带来的优势是全方位的。

    3. 知其然知其所以然

    人类基于实验和科学观测结果建立与发展物理学的历程,是“知其然,也知其所以然”的最好体现。
    而人工智能技术,经验的成分比较多。输入大量数据后,机器自动调整参数,完成深度学习模型,在许多领域确实达到了非常不错的效果,但模型中的参数为什么如此设置,里面蕴含的更深层次的道理等,在很多情况下还是个黑盒。

    4. 常识

    人的常识,是个极其有趣,又往往只可意会、不可言传的东西。
    比如:即使两岁孩童也能理解直观的物理过程,比如丢出的物体会下落。人类并不需要有意识地知道任何物理学就能预测这些物理过程。但机器做不到这一点。
    我们每个人头脑中,都有一些几乎被所有人认可的,无须仔细思考就能使用的知识、经验或方法。(康德的先天经验)

    5. 自我意识

    很难说清到底什么是自我意识,但我们又总是说,机器只有具备了自我意识,才叫真的智能。

    我们在自己的宇宙中,只发现了人类这一种具有自我意识的生物。
    茫茫宇宙,尚无法找到如《三体》中所述的外星智慧的痕迹。这一不合常理的现象就是著名的费米悖论。
    《三体》用黑暗森林理论来解释费米悖论。而费米悖论的另一种符合逻辑的解释就是,
    人类其实只不过是更高级别的智慧生物养在VR实验室里的试验品而已,人类的所谓自我意识,也许不过是“上帝”为了满足我们的虚荣心而专门设计的一种程序逻辑。

    6. 审美

    • 审美能力是人类独有的特征,很难用技术语言解释,也很难赋予机器。

    • 审美能力并非与生俱来,但可以在大量阅读和欣赏的过程中,自然而然地形成。

    • 虽然机器已经可以依照人类的绘画、诗歌、音乐等艺术风格,照猫画虎般地创作出电脑艺术作品来,但机器并不真正懂得什么是美。

    • 审美是一件非常个性化的事情,不同的人心中有自己一套关于美的标准,但审美又可以被语言文字描述和解释,人与人之间可以很容易地交换和分享审美体验。而这种神奇的能力,计算机目前几乎完全不具备。

    • 审美能力明显是一个跨领域的能力,每个人的审美能力都是一个综合能力,与这个人的个人经历、文史知识、艺术修养、生活经验等都有密切关系。一个没有多少经历的年轻人都尚且感受不到那些文学、诗词、音乐绘画中传达的情绪,何况还要让计算机学会?

    7. 情感

    欢乐、忧伤、愤怒、讨厌、害怕……每个人都因为这些情感的存在,而变得独特和有存在感。
    情感是人类之所以为人类的感性基础。机器目前没有这种情感,所以那些基于人文的关怀的服务,也是机器暂时替代不了的。

    五、人工智能时代学什么不会被淘汰

    简单说,这个时代,通才比专才更有竞争力,更不容易被AI淘汰。
    人和今天的AI相比,有一个明显的智慧优势,就是举一反三、触类旁通的能力。

    人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能是最没有价值的,几乎一定可以由机器来完成。那种单一领域的钉子是最容易被替代的,比如:律师、保安、客服、司机等等。
    未来的生产制造行业将是机器人、智能流水线的天下。人类再去学习基本的零件制造、产品组装等技能,显然意义不大。人类的特长在于系统设计和质量管控,只有学习更高层次的知识,才能真正体现出人类的价值。

    那些最能体现人的综合素质的技能,例如

    • 对复杂系统的综合分析、决策能力。
    • 对于艺术文化的审美能力和创造性思维
    • 基于生活经验、文化熏陶、人自身的情感之上的,与他人互动的能力。

    这些才是人工智能时代最有价值的,最值得培养和学习的技能。

    举例来说

    • 建筑。只会搬砖拉货砌墙注定会被淘汰,最有价值的显然是决定整体建筑风格的建筑师以及管理整体施工方案的工程总监。
    • 软件。只会CURD的程序员是最容易被淘汰的,而懂得架构、系统设计、算法并能综合运用的程序员不容易被淘汰。
    • 翻译。只会简单的字面翻译的翻译人员一定会淘汰,而有很好的审美、文学艺术修养,从事涉及大量人类情感的文学作品的翻译不会被淘汰。

    科幻作家、雨果奖得主郝景芳的说过一句话

    很显然,我们需要去重视那些重复性标准化的工作所不能够覆盖的领域。包括什么呢?包括创造性、情感交流、审美、艺术能力,还有我们的综合理解能力、我们把很多碎片连成一个故事这样的讲述能力,我们的体验。所有这些在我们看来非常不可靠的东西,其实往往是人类智能非常独特的能力

    人工智能时代,自动化系统将大幅度解放生产力,让人类可以从繁重的工作中解放出来,拥有大量的休闲时间。
    这时候,社会对文化、娱乐的追求会达到一个更高的层次,需求将是现在的数十甚至上百倍。所以,学习文艺创作技巧,用人类独有的智慧、丰富的情感以及对艺术的创造性去解读创作文娱内容,显然是未来人类证明自己价值的最好方式之一。
    当绝大多数人每天花6个小时或更多时间去体验最新的虚拟现实游戏、看最好的沉浸式虚拟现实电影、在虚拟音乐厅里听大师演奏最浪漫的乐曲、阅读最能感动人的诗歌和小说……作家、音乐家、电影导演和编剧、游戏设计师等,一定是人工智能时代的明星职业。

  • 相关阅读:
    html框内文字垂直居中的方法
    关于 TensorFlow
    用windows自带的ftp.exe实现断点续传的方法
    Bat脚本处理ftp超强案例解说
    用winrar和ftp命令实现自动备份文件并自动上传到指定的ftp服务器
    在ubuntu上利用科大讯飞的SDK实现语音识别-语义识别等功能
    Linux音频编程--使用ALSA库播放wav文件
    使用iconv进行文件编码转换
    嵌入式Linux-LCD显示多行文字
    使用freetype来显示中文汉字和英文字符
  • 原文地址:https://www.cnblogs.com/chenqionghe/p/14961648.html
Copyright © 2011-2022 走看看