zoukankan      html  css  js  c++  java
  • 数组的逆序对

    题目描述来自力扣https://leetcode-cn.com/problems/shu-zu-zhong-de-ni-xu-dui-lcof/

    在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

    除了暴力法以外,还有两种更优的方法可以解决这个问题。

    1. 利用归并排序,递归的求解逆序对的个数。
    2. 利用元素计数数组。构造这个计数数组时,需要在原数组上从后往前遍历。此外,使用树状数组可以减少内存使用。

    1)第一种方法:

    7 12 15 16 | 4 6 9 10 
    ^ ^ ^
    lp rp rp

    进行归并排序时,假设已经回溯到最后一次合并,如上图所示。

    1、两个子数组进行一轮比较后,右边数组指针指向红色标记处。此时,对于lp指向的元素来说,存在两个逆序对(<7, 4>和<7, 6>)。

    2、进行第二轮比较后,lp此时指向12,rp指向右边数组的尾后位置。这是,对于元素12来说,逆序对个数为4。

    依次类推,可以得到最终答案。当然,在递归最深处往前回溯时,会自动记录各个不同消息子数组的逆序对个数。具体代码如下:

    int reversePairs(vector<int>& nums) {
        int n = nums.size();
        vector<int> temp(n);
        return mergeAndCount(nums, temp, 0, n - 1);
    }
    
    int mergeAndCount(vector<int>& nums, vector<int>& temp, int lo, int hi)
    {
        if(lo >= hi) return 0;
        int mid = lo + (hi - lo) / 2;
        int ans = 0;
        ans += mergeAndCount(nums, temp, lo, mid) + mergeAndCount(nums,temp, mid + 1, hi);
        if(nums[mid] <= nums[mid + 1])
        {
            return ans;
        }
        int pos = lo;
        int i = lo;
        int j = mid + 1;
        while(i <= mid && j <= hi)
        {
            if(nums[i] <= nums[j])
            {
                temp[pos++] = nums[i++];
                ans += j - mid - 1;
            }
            else
            {
                temp[pos++] = nums[j++];
            }
        }
        for(int k = i; k <= mid; ++k)
        {
            temp[pos++] = nums[k];
            ans += j - mid - 1;
        }
        for(int k = j; k <= hi; ++k)
        {
            temp[pos++] = nums[k];
        }
        std::copy(temp.begin() + lo, temp.begin() + hi + 1, nums.begin() + lo);
        return ans;
    }

    时间复杂度:O(nlgn), 空间复杂度:O(n)

    2)第二种方法:

     基本原理比较好理解。现在来说一下如何利用树状数组减少内存的使用。树状数组用来存在原始数组的前缀和。其更新和查询的时间复杂度均为O(lgn),n为数组大小。

    实际上,树状数组只需要存储原始数组每个元素大小的排名即可。这样一来,树状数组的尺寸可以设为原始数组的大小加1(设原始数组有n个元素,则数状数组大小为n+1。因为数组数组第0位不存储元素)。

    代码如下:

    struct TreeArray
    {
        TreeArray(int cap) : data(cap + 1), n(cap) {}
    
      //从整数的二进制表达来看,此函数用来计算整数x的最低`1`比特位到x的最低比特位组成的整数
    static int lowbit(int x) { return x & (-x); }
      //查询并返回原始数组a[1...i]的和
    int query(int i) { int res = 0; while(i > 0) { res += data[i]; i -= lowbit(i); } return res; }
      //更新树状数组
    void update(int i, int val) { while(i <= n) { data[i] += val; i += lowbit(i); } } private: int n; vector<int> data; }; class Solution { public: int reversePairs(vector<int>& nums) { int n = nums.size(); vector<int> temp = nums; std::sort(temp.begin(), temp.end()); for(auto& num : nums) { num = lower_bound(temp.begin(), temp.end(), num) - temp.begin() + 1; } TreeArray ta(n); int ans = 0; for(int i = n - 1; i >= 0; --i) { ans += ta.query(nums[i] - 1); ta.update(nums[i], 1); } return ans; } };

    PS: 树状数组的基本原理和实现可以参考以下链接

    https://blog.csdn.net/flushhip/article/details/79165701

    https://www.cnblogs.com/xenny/p/9739600.html

  • 相关阅读:
    动态规划设计:最长递增子序列
    经典动态规划:编辑距离
    经典动态规划:子集背包问题
    iOS开发网络篇—HTTP协议
    IOS之Core Foundation框架和Cocoa Foundation框架的区别
    iOS开发多线程篇—GCD简介
    iOS-UIImage变为NSData并进行压缩
    iOS开发UI之Quartz2D使用(绘制基本图形)
    UIImagePickerController
    mac下搭建discuz论坛
  • 原文地址:https://www.cnblogs.com/chenqn/p/13192423.html
Copyright © 2011-2022 走看看