zoukankan      html  css  js  c++  java
  • 常用Spark-SQL数据处理总结

    常用Spark-SQL数据处理总结

    导语: 本文是在实习工作当中就遇到的数据处理当中Spark-SQL相关的操作做一个总结。主要包含ArrayType, JSON等复杂数据类型的处理。以及UDF的各种实现, 希望通过更加简单的处理方式提高程序的可读性, 代码简洁性和优雅性。

    本文是使用Scala-test框架写的测试用例。并且将SparkSession进行如下封装。下文的所有测试用例都遵循此规则。

    trait SparkSessionTestWrapper {
      lazy val spark: SparkSession = {
        SparkSession
          .builder()
          .master("local[*]")
          .appName("spark test example")
          .config("spark.driver.bindAddress","127.0.0.1")
          .getOrCreate()
      }
    }
    

    UDF常用方法

    1. 无参数输入, 输出一列

      下面是新添加一个空的Array列的示例

      class UdfTest extends FunSuite with SparkSessionTestWrapper {
          test("testUdf") {
              import spark.implicits._
      
              val sourceDf = Seq(
                  ("测试")
              ).toDF("name")
      
              val emptyArray = udf(() => Array.empty[String])
              val actualDf = sourceDf.withColumn("value", emptyArray())
              actualDf.printSchema()
              actualDf.show()
          }
      }
      

      运行结果如下:

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153011596-607630752.png
    2. 输入一列, 输出一列

      test("testUdf2") {
          import spark.implicits._
      
          // 定义UDF
          def sexMapFunction: UserDefinedFunction = udf((sex: String) => {
              sex match {
                  case "0" => "F"
                  case "1" => "M"
                  case "2" => "N"
                  case _ => "N"
              }
          })
      
          val sourceDf = Seq(
              ("张三", "0"),
              ("李四", "1"),
              ("王五", "2"),
              ("刘六", "3")
          ).toDF("name", "code")
      
          val actualDf = sourceDf.withColumn("sex", sexMapFunction(col("code")))
          actualDf.printSchema()
          actualDf.show()
      
          println("**************** following is sql test ****************")
          spark.udf.register("sexMap", sexMapFunction)
          sourceDf.createTempView("table_tmp")
          val sql = "SELECT name, code, sexMap(code) as sex FROM table_tmp";
          val df = spark.sql(sql)
          df.printSchema()
          df.show()
      }
      

      运行结果如下:

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153011409-884902546.png
    3. 输入一列, 输出多列

      test("testUdf3") {
          import spark.implicits._
      
          case class Test(id: Int, name: String)
          val schema = StructType(List(StructField("id", IntegerType), StructField("name", StringType)))
      
          // 定义UDF
          def SplitFunction: UserDefinedFunction = udf((str: String) => {
              val splits = str.split(",")
              Test(splits(0).toInt, splits(1))
          }, schema)
      
          val sourceDf = Seq(
              ("1,张三"),
              ("2,李四"),
              ("3,王五")
          ).toDF("case")
      
          var actualDf = sourceDf.withColumn("idname", SplitFunction(col("case")))
          actualDf = actualDf.select("case", "idname.*")
          actualDf.printSchema()
          actualDf.show()
      }
      
      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153011204-1217776651.png
    4. 输入多列, 输出一列

      test("testUdf4") {
          import spark.implicits._
      
          def AvgScoreFunction: UserDefinedFunction = udf((row: Row) => {
              row.schema.fields.map { field =>
                  field.dataType match {
                      case IntegerType => row.getAs[Int](field.name).toDouble
                      case StringType => row.getAs[String](field.name).toDouble
                      case FloatType => row.getAs[Float](field.name).toDouble
                      case DoubleType => row.getAs[Double](field.name)
                      case LongType => row.getAs[Long](field.name).toDouble
                  }
              }.sum / row.schema.fields.length
          })
      
          val sourceDf = Seq(
              ("张三", "34", 28, 19F, 29.0, 99L),
              ("李四", "90.5", 110, 80.8F, 88.88, 60L)
          ).toDF("姓名", "语文", "数学", "英语", "物理", "体育")
          sourceDf.printSchema()
          sourceDf.show()
          var actualDf = sourceDf.withColumn("语数外平均成绩", AvgScoreFunction(struct("语文", "数学", "英语")))
          actualDf.printSchema()
          actualDf.show()
          actualDf = sourceDf.withColumn("全部课程平均成绩", AvgScoreFunction(struct(sourceDf.columns.drop(1).map(col): _*)))
          actualDf.show()
      }
      

      运行结果

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153010898-658155449.png

    JSON数据类型处理

    1. 提取单个(多个)字段值

      test("testUdf5") {
          import spark.implicits._
      
          val sourceDf = Seq(
              (1, "{"key_a": "value_a", "key_b": 1}")
          ).toDF("id", "json_str")
          var actualDf = sourceDf.withColumn("key_a", get_json_object(col("json_str"), "$.key_a"))
            // get_json_object 获取单个json字段
            .withColumn("key_b", get_json_object(col("json_str"), "$.key_b"))
            // json_tuple 获取多个字段
            .select(col("id"), col("json_str"), col("key_a"), col("key_b"),
                json_tuple(col("json_str"), "key_a", "key_b").as(Seq("key_a_copy", "key_b_copy")))
          actualDf.printSchema()
          actualDf.show()
      
          sourceDf.createTempView("table_tmp")
          val sql =
              """
                | SELECT id,
                |     json_str,
                |     get_json_object(t.json_str, "$.key_a") as key_a,
                |     get_json_object(t.json_str, "$.key_b") as key_b,
                |     j.key_a_copy,
                |     j.key_b_copy
                | FROM table_tmp t
                |     LATERAL VIEW json_tuple(t.json_str, 'key_a', 'key_b') j as key_a_copy, key_b_copy
                |""".stripMargin
          actualDf = spark.sql(sql)
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153010408-1077545512.png
    2. 提取JSON数组

      test("testUdf6") {
          import spark.implicits._
      
          val sourceDf = Seq(
              (1,
                """
                  |[
                  |	{
                  |		"name": "网友",
                  |		"weight": 0.1973038
                  |	},
                  |	{
                  |		"name": "中国银联",
                  |		"weight": 0.1973038
                  |	}
                  |]
                  |""".stripMargin.replaceAll("\s", ""))
          ).toDF("id", "json_str")
          var actualDf = sourceDf
          // 获取单个字段
          .withColumn("names_1", from_json(col("json_str"), ArrayType(StructType(List(StructField("name", StringType))))))
          // 获取多个字段
          .withColumn("names_weight_struct", from_json(col("json_str"), ArrayType(StructType(List(StructField("name", StringType), StructField("weight", StringType))))))
          // 获取单个字段
          .withColumn("names_2", split(regexp_replace(get_json_object(col("json_str"), "$[*].name"), ""|\[|\]", ""), ","))
          actualDf.printSchema()
          actualDf.show()
      
          // 通过SQL的方式获取单个字段
          sourceDf.createTempView("table_tmp")
          val sql =
              """
                | SELECT id,
                |     json_str,
                |     split(regexp_replace(get_json_object(json_str, "$[*].name"), "\[|\]|"", ""), ",") as name
                | FROM table_tmp t
                |""".stripMargin
          actualDf = spark.sql(sql)
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153010159-28766015.png

    其他Spark-SQL操作

    1. 将某列的一行array展开。

      test("testUdf7") {
          import spark.implicits._
      
          val sourceDf = Seq(
              ("name", Array("张三", "李四", "王五"))
          ).toDF("col_name", "col_value")
          sourceDf.printSchema()
          sourceDf.show()
          println("
      following is explode result:
      ")
          val actualDf = sourceDf.select(col("col_name"), explode(col("col_value")))
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153009932-1423805579.png
    2. Flatten 嵌套的 struct 列

      test("testUdf8") {
          import spark.implicits._
      
          var sourceDf = Seq(
              ("A", "B", "C", "D", "E")
          ).toDF("a", "b", "c", "d", "e")
      
          sourceDf = sourceDf.withColumn("struct_de", struct("d", "e"))
            .withColumn("struct_bc_de", struct("b", "c", "struct_de"))
            .select("a", "struct_bc_de")
          println("following is sourceDf:
      ")
          sourceDf.printSchema()
          sourceDf.show()
      
          def flattenStructSchema(schema: StructType, prefix: String = null) : Array[Column] = {
              schema.fields.flatMap(f => {
                  val columnName = if (prefix == null) f.name else (prefix + "." + f.name)
      
                  f.dataType match {
                      case st: StructType => flattenStructSchema(st, columnName)
                      case _ => Array(
                          col(columnName)
                            // 这列别名可以不加
                            //.as(columnName.replace(".","_"))
                      )
                  }
              })
          }
      
          val actualDf = sourceDf.select(flattenStructSchema(sourceDf.schema): _*)
          println("following is explode result:
      ")
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153009737-505708408.png
    3. 添加聚合列, 但是保留其他所有列

      test("testUdf9") {
          import spark.implicits._
      
          var sourceDf = Seq(
              ("a", "b", 1, "c", "d"),
              ("a", "b", 2, "m", "n"),
              ("a", "b", 3, "p", "q"),
              ("a", "B", 2, "u", "v"),
              ("a", "B", 1, "x", "y"),
              ("a", "B", 3, "r", "w")
          ).toDF("col_1", "col_2", "number", "col_other_1", "col_other_2")
          sourceDf.printSchema()
          sourceDf.show()
          val groupCols = Array("col_1", "col_2")
          val structCol = "struct"
          sourceDf = sourceDf.withColumn(structCol, struct(sourceDf.columns.diff(groupCols).map(col): _*))
          println("following is result:
      ")
          var actualDf = sourceDf.groupBy(groupCols.map(col): _*)
            .agg(
                sum("number").as("sum"),
                avg("number").as("average"),
                collect_list(structCol).as(structCol))
          actualDf = actualDf.select(actualDf.columns.diff(structCol).map(col) :+ explode(col(structCol)) : _*)
            .drop(structCol)
          actualDf = actualDf.select(flattenStructSchema(actualDf.schema): _*)
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果如下:

      image-20210826095505748
    4. 一个DataFrame JOIN 另一个DataFrame两次

      test("testUdf10") {
          import spark.implicits._
      
          var sourceDf = Seq(
              (1, 2),
              (3, 4)
          ).toDF("id_1", "id_2")
      
          var userDf = Seq(
              (1, "张三"),
              (2, "李四"),
              (3, "王五"),
              (4, "刘六")
          ).toDF("id", "name")
      
          sourceDf.show()
          userDf.show()
      
          var actualDf = sourceDf.join(userDf, sourceDf.col("id_1") === userDf.col("id"), "left")
            .withColumn("name_1", userDf.col("name"))
          actualDf = actualDf.join(userDf, actualDf.col("id_2") === userDf.col("id"), "left")
            .withColumn("name_2", userDf.col("name"))
          println("following is join result:
      ")
          actualDf.printSchema()
          actualDf.show()
      }
      

      上面程序是souceDf连续join userDf两次, 于是报了错。原因是检查到了笛卡尔积

      Detected implicit cartesian product for LEFT OUTER join between logical plans
      Project [id_1#5, id_2#6, id#14, name#15, name#15 AS name_1#44]
      +- Join LeftOuter, (id_1#5 = id#14)
         :- LocalRelation [id_1#5, id_2#6]
         +- LocalRelation [id#14, name#15]
      and
      LocalRelation [id#50, name#51]
      Join condition is missing or trivial.
      Either: use the CROSS JOIN syntax to allow cartesian products between these
      relations, or: enable implicit cartesian products by setting the configuration
      variable spark.sql.crossJoin.enabled=true;
      org.apache.spark.sql.AnalysisException: Detected implicit cartesian product for LEFT OUTER join between logical plans
      Project [id_1#5, id_2#6, id#14, name#15, name#15 AS name_1#44]
      +- Join LeftOuter, (id_1#5 = id#14)
         :- LocalRelation [id_1#5, id_2#6]
         +- LocalRelation [id#14, name#15]
      and
      LocalRelation [id#50, name#51]
      Join condition is missing or trivial.
      Either: use the CROSS JOIN syntax to allow cartesian products between these
      relations, or: enable implicit cartesian products by setting the configuration
      variable spark.sql.crossJoin.enabled=true;
      	at org.apache.spark.sql.catalyst.optimizer.CheckCartesianProducts$$anonfun$apply$22.applyOrElse(Optimizer.scala:1295)
      

      解决办法:给要Join的DataFrame加上别名, 如下

      test("testUdf10") {
          import spark.implicits._
      
          var sourceDf = Seq(
              (1, 2),
              (3, 4)
          ).toDF("id_1", "id_2").as("sourceDf")
      
          val userDf = Seq(
              (1, "张三"),
              (2, "李四"),
              (3, "王五"),
              (4, "刘六")
          ).toDF("id", "name").as("userDf")
      
          sourceDf.show()
          userDf.show()
      
          var leftJoinedDf = sourceDf.join(userDf, col("sourceDf.id_1") === col("userDf.id"), "left")
            .withColumn("name_1", userDf.col("name")).alias("leftJoinedDf")
          val actualDf = leftJoinedDf.join(userDf, col("leftJoinedDf.id_2") === col("userDf.id"), "left")
            .withColumn("name_2", userDf.col("name"))
            .select("id_1", "name_1", "id_2", "name_2")
          println("following is join result:
      ")
          actualDf.printSchema()
          actualDf.show()
      }
      

      运行结果如下:

      https://img2020.cnblogs.com/blog/1853443/202109/1853443-20210905153009171-1827518423.png
    5. DataFrame转RDD使用Map方法的另一种写法

      def mapFunction: UserDefinedFunction = udf((row: Row) => {
          // 自已在这里写需要的返回值, 可以是一列, 也可以是多列, 参照本文的第一部分UDF写法
      })
      
      df.withColumn("map_return", mapFunction(df.columns.map(col): _*))
      
    6. 填充空值为默认值

      def naMap(df: DataFrame): Map[String, Any] = {
          df.schema.filter(field => Seq(StringType, LongType, IntegerType, DoubleType, ByteType, ShortType)
            .contains(field.dataType))
            .map(column => {
                column.dataType match {
                    case IntegerType | LongType | ByteType | ShortType => (column.name -> 0)
                    case StringType => (column.name -> "")
                    case DoubleType => (column.name -> 0.0)
                }
            }).toMap
      }
      df = df.na.fill(naMap(df))
      
    7. 存表前自动调整字段顺序并自动填充缺失列

      def selectColumn(df: DataFrame, schema: StructType): DataFrame = {
          val original = df.dtypes.map(v => v._1)
          val defaultValueMap = Map("ByteType" -> 0, "IntegerType" -> 0, "LongType" -> 0, "StringType" -> "", "FloatType" -> 0.0, "DoubleType" -> 0.0)
          var rtn = df
          for (field <- schema.fields) {
              // 如果select的字段在df.schema中不存在
              if (!original.contains(field.name)) {
                  // 字段名称在defaultFieldMap中没有, 则使用字段类型映射默认值
                  rtn = rtn.withColumn(field.name, lit(defaultValueMap(field.dataType.toString)))
              }
          }
          val selectFields = schema.fields.map(v => v.name)
          rtn.select(selectFields(0), selectFields.drop(1): _*)
      }
      
    8. JDBC操作DataFrame

      df.rdd.foreachPartition(iterator => {
          val db = DBUtils(url, name, password)
          db.prop.setProperty("rewriteBatchedStatements", "true")
          val conn = db.getConnection
          val args = List.fill(fieldLen)("?")
          val sql = s"INSERT IGNORE INTO table_name (`a`, `b`) values (?, ?) "
          val ps = conn.prepareStatement(sql)
          var size = 0
          iterator.foreach(row => {
              for ((dataTypeMap, index) <- dataTypeMap.zipWithIndex) {
                  dataTypeMap._2 match {
                      case StringType => ps.setString(index + 1, row.getString(index))
                      case IntegerType => ps.setInt(index + 1, row.getInt(index))
                      case LongType => ps.setLong(index + 1, row.getLong(index))
                      case DoubleType => ps.setDouble(index + 1, row.getDouble(index))
                      case ByteType => ps.setByte(index + 1, row.getByte(index))
                      case ShortType => ps.setShort(index + 1, row.getShort(index))
                  }
              }
              size += 1
              ps.addBatch()
              if (size == batchSize) {
                  ps.executeBatch()
                  ps.clearBatch()
                  size = 0
              }
          })
          ps.executeBatch()
          conn.close()
      })
      
  • 相关阅读:
    C#读取Excel文档
    用DataSet方式更新数据库表
    using(){},Close(),Dispose()的区别
    ADO.NET连接数据库的两种方式
    DateUtils
    GoF的23个经典设计模式
    react中需要用到【深度复制】的问题
    css区分ie8/ie9/ie10/ie11 chrome firefox的代码
    【个人学习笔记】走近H5
    【React入门实例(运行于浏览器duan)】
  • 原文地址:https://www.cnblogs.com/chenrj97/p/15229557.html
Copyright © 2011-2022 走看看