Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
这是一道有点复杂的拓扑排序的题目
由于一开始只是考虑第一次有没有多个点入站,所以WA了几次,后来才知道是每次都应该考虑一下,于是才AC的
#include<map> #include<set> #include<stack> #include<queue> #include<cmath> #include<vector> #include<cstdio> #include<string> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define inf 0x0f0f0f0f using namespace std; int group[27][27],indegree[27],in[27],list[27],n,m; vector<int>G[27]; int top_sort() { int flag=0; for (int i=0;i<n;i++) in[i]=indegree[i]; stack<int>S; for (int i=0;i<n;i++) { if (in[i]==0) S.push(i); } if (S.size()>1) flag=1; int cut=0; while(!S.empty()) { if (S.size()>1) flag=1; int u=S.top(); S.pop(); list[cut++]=u; for (int i=0;i<G[u].size();i++) { int v=G[u][i]; in[v]--; if (in[v]==0) S.push(v); } } if (cut<n) return 1;//maodun if (flag==1) return 2;//don't sure return 0;//ok } int main() { int error,ok,x,y; char str[5]; while(scanf("%d%d",&n,&m)!=EOF && n && m) { memset(group,0,sizeof(group)); memset(indegree,0,sizeof(indegree)); for (int i=0;i<=n;i++) G[i].clear(); error=0; ok=0; for (int i=1;i<=m;i++) { scanf("%s",str); x=str[0]-'A'; y=str[2]-'A'; if (error==0 && ok==0) { if (group[y][x]==1) { error=1; printf("Inconsistency found after %d relations. ",i); continue; } if (group[y][x]==0) { if (group[x][y]==0){ group[x][y]=1; G[x].push_back(y); indegree[y]++; } int temp=top_sort(); if (temp==1) { error=1; printf("Inconsistency found after %d relations. ",i); } if (temp==0) { ok=1; printf("Sorted sequence determined after %d relations: ",i); for (int j=0;j<n;j++) printf("%c",list[j]+'A'); printf(". "); } if (temp==2) continue; } } } if (error==0 && ok==0) printf("Sorted sequence cannot be determined. "); } return 0; }
作者 chensunrise