zoukankan      html  css  js  c++  java
  • poj 3264 Balanced Lineup

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    简单的线段树题目,就是线段树求最大值与最小最,然后最大与最小相减,都不用更新,在建树的时候顺便更新一下就可以了,简单的不能再简单了
    #include<map>
    #include<set>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<vector>
    #include<cstdio>
    #include<string>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    #define  inf 0x0f0f0f0f
    
    using namespace std;
    const int maxn=50000+10;
    
    struct node
    {
         int L,R,maxx,minx;
    }tree[maxn*4];
    int a[maxn];
    
    void build(int c,int x,int y)
    {
         tree[c].L=x; tree[c].R=y;
         if (x==y)
         {
              tree[c].minx=a[x];
              tree[c].maxx=a[x];
              return;
         }
         int mid=x+(y-x)/2;
         build(c*2,x,mid);
         build(c*2+1,mid+1,y);
         tree[c].maxx=max(tree[c*2].maxx,tree[c*2+1].maxx);
         tree[c].minx=min(tree[c*2].minx,tree[c*2+1].minx);
    }
    
    int get_max(int c,int x,int y)
    {
         if (tree[c].L==x && tree[c].R==y)
         return tree[c].maxx;
         int mid=tree[c].L+(tree[c].R-tree[c].L)/2;
         if (y<=mid) return get_max(c*2,x,y);
         else if (x>mid) return get_max(c*2+1,x,y);
         else return max(get_max(c*2,x,mid),get_max(c*2+1,mid+1,y));
    }
    
    int get_min(int c,int x,int y)
    {
         if (tree[c].L==x && tree[c].R==y)
         return tree[c].minx;
         int mid=tree[c].L+(tree[c].R-tree[c].L)/2;
         if (y<=mid) return get_min(c*2,x,y);
         else if (x>mid) return get_min(c*2+1,x,y);
         else return min(get_min(c*2,x,mid),get_min(c*2+1,mid+1,y));
    }
    
    int get_diff(int x,int y)
    {
         return get_max(1,x,y)-get_min(1,x,y);
    }
    
    int main()
    {
         int n,m,x,y;
         while(scanf("%d%d",&n,&m)!=EOF)
         {
              for (int i=1;i<=n;i++) scanf("%d",&a[i]);
              build(1,1,n);
              while(m--)
              {
                   scanf("%d%d",&x,&y);
                   printf("%d
    ",get_diff(x,y));
              }
         }
         return 0;
    }

    作者 chensunrise

  • 相关阅读:
    《大道至简》读后感
    四大扩展欧几里得算法
    java8中使用函数式接口
    04_web基础(一)之tomcat介绍
    03_java基础(九)之综合练习与考核评估
    建站流程
    03_java基础(八)之static关键字与代码块
    (十)拒绝服务攻击工具包
    (九)拒绝服务攻击工具
    (八)拒绝服务–应用层DoS 攻击
  • 原文地址:https://www.cnblogs.com/chensunrise/p/3810998.html
Copyright © 2011-2022 走看看